Genome-wide analysis of Lp(a) induced gene expression in human aortic valve interstitial cells
Ontology highlight
ABSTRACT: Lp(a) induced human aortic valve interstitial cells calcification, this work intend to elucidate the undermined biological pathways by analysing Lp(a) induced gene expression. Results provided important information of Lp(a) induced biological pathways, and showed that Lp(a) possibly exert its effects on osteogenesis, apoptosis, extracellular matrix remodeling, and vesicle biogenesis via 14-3-3 regulated biological pathways.
Project description:To explore the miR expression profile of calcified valve interstitial cells (VICs) induced by high calcium/phosphate, identify the key miRNA in the calcification process of VICs, and probe effect of miRs in regulating valve calcification.
Project description:Calcific aortic valve disease (CAVD) primarily involves osteogenic differentiation in human aortic valve interstitial cells (hVICs). Schisandrol B (SolB), a natural bioactive constituent, has known therapeutic effects on inflammatory and fibrotic disorders. However, its impact on valve calcification has not been reported. Transcriptome sequencing was used to analyze potential molecular pathways affected by SolB treatment. To explore the therapeutic mechanism of SolB, human valve interstitial cells were induced to undergo osteogenic differentiation by OM, with or without SolB treatment meanwhile. Among the signaling pathways enriched, the P53 signaling pathway was identified as the upstream regulator of other enriched pathways such as Cell cycle, Oocyte meiosis, Cytokine-cytokine receptor interactions. These pathways were regulated by the P53 signaling pathway and were reported to be stimulated by DNA damage, an early stage of pathological change in CAVD. The cytokine-cytokine receptor interaction signaling pathway was reported to correlate with calcified aortic valve disease. taken together, our data revealed potential therapitic mechanism p53 signaling of Schisandrol B treatment in hVICs calcification.
Project description:Although calcific aortic valve stenosis (CAVS) is the most prevalent valvular heart disease, the molecular mechanisms underlying aortic valve calcification remain unknown. Here, we found a significant elevation in stanniocalcin-1 (STC1) expression in the valve interstitial cells (VICs) of calcific aortic valves by combined analysis of our comprehensive gene expression data and microarray datasets reported previously. Immunohistochemical staining showed that STC1 was located around the calcific area in the aortic valves of patients with CAVS. In vitro experiments using inhibitors and siRNA targeting osteoblast differentiation signaling revealed that activation of the Akt/STC1 axis was essential for runt-related transcription factor 2 (RUNX2) induction in the VICs. RNA sequencing and bioinformatics analysis of STC1-knocked down VICs in osteoblast differentiation medium resulted in silencing of the induction of osteoarthritis signaling-related genes, including RUNX2 and COL10A1. STC1 depletion in the murine CAVS model improved aortic valve dysfunction with high peak velocity and valve thickening and suppressed the appearance of osteochondrocytes. STC1-deficient mice also exhibited complete calcification abolishment, although partial valve thickening by aortic valve injury was observed. Our findings suggest that STC1 may be a critical factor in determining valve calcification and a novel target for preventing the transition to severe CAVS with calcification. We analyzed the gene expression profiles of the valve interstitial cells (VICs) isolated from noncalcific and calcific areas in calcific aortic valve stenosis (CAVS) donors using a gene microarray.
Project description:Introduction: Renal failure is associated with aortic valve calcification. Using our rat model of uraemia-induced reversible aortic valve calcification, we assessed the role of apoptosis and survival pathways in aortic valve calcification. We also explored the effects of raloxifene - an estrogen receptor modulator on valvular calcification. Methods: Gene array analysis was performed in aortic valves obtained from 3 groups of rats (n=7 each): calcified valves from rats fed with uremic diet -high-adenine (0.75%), high-phosphate diet (1.5%), valves after calcification resolution following diet cessation (reversibility) and control. In addition, four groups of rats (n=10 each) were used in order to evaluate the effect of raloxifene in aortic valve calcification: three groups as mentioned above and a fourth group fed with the uremic diet which also received daily raloxifene. Evaluation of these groups included imaging, histology and antigen expression analysis. Results: Gene array results showed that the majority of the expressed genes that were altered were from the diet group valves. Most apoptosis-related genes were changed in a pro-apoptotic direction in calcified valves. Apoptosis and decrease in several survival pathways were confirmed in calcified valves. Resolution of aortic valve calcification was accompanied by decreased apoptosis and upregulation of these ant-apoptotic pathways. Imaging and histology demonstrated that raloxifene significantly decreased aortic valve calcification. Conclusion: Downregulation of several survival pathways and apoptosis are involved in the pathogenesis of aortic valve calcification. The beneficial effect of raloxifene in valve calcification is related to apoptosis modulation. This novel observation is important for developing remedies for aortic valve calcification in patients with renal failure. Introduction: Renal failure is associated with aortic valve calcification. Using our rat model of uraemia-induced reversible aortic valve calcification, we assessed the role of apoptosis and survival pathways in aortic valve calcification. We also explored the effects of raloxifene - an estrogen receptor modulator on valvular calcification. Methods: Gene array analysis was performed in aortic valves obtained from 3 groups of rats (n=7 each): calcified valves from rats fed with uremic diet -high-adenine (0.75%), high-phosphate diet (1.5%), valves after calcification resolution following diet cessation (reversibility) and control. In addition, four groups of rats (n=10 each) were used in order to evaluate the effect of raloxifene in aortic valve calcification: three groups as mentioned above and a fourth group fed with the uremic diet which also received daily raloxifene. Evaluation of these groups included imaging, histology and antigen expression analysis. Results: Gene array results showed that the majority of the expressed genes that were altered were from the diet group valves. Most apoptosis-related genes were changed in a pro-apoptotic direction in calcified valves. Apoptosis and decrease in several survival pathways were confirmed in calcified valves. Resolution of aortic valve calcification was accompanied by decreased apoptosis and upregulation of these ant-apoptotic pathways. Imaging and histology demonstrated that raloxifene significantly decreased aortic valve calcification. Conclusion: Downregulation of several survival pathways and apoptosis are involved in the pathogenesis of aortic valve calcification. The beneficial effect of raloxifene in valve calcification is related to apoptosis modulation. This novel observation is important for developing remedies for aortic valve calcification in patients with renal failure.
Project description:The microarray experiment was employed to evaluate the gene expressions in skin lesions of LP, hypertrophic LP (HLP), and healthy controls.
Project description:Cardiovascular calcification can occur in vascular and valvular structures and is commonly associated with calcium deposition and tissue mineralization leading to stiffness and dysfunction. Based on shared risk factors and end stage pathologies, calcific aortic valve disease (CAVD) and coronary artery calcification (CAC) are often considered as one disease, and similarly treated. However, the clinical conditions associated with each phenotype can be different, suggesting multifaceted pathologies. To better understand diversity in molecular and cellular processes that underlie calcification in vascular and valvular structures, we exposed aortic vascular smooth muscle cells (AVSMCs) and aortic valve interstitial cells (AVICs) to calcific stimuli including high (2.5mM) phosphate and osteogenic media (OM) treatments in vitro. Consistent with clinical observations made by others, we show that AVSMCs are more susceptible to calcification than AVICs, and this process is mediated by cell-specific and treatment-specific molecular responses. RNA-seq analysis demonstrates that in response to calcific-stimuli, both AVSMCs and AVICs activate a robust ossification-program, although the signaling pathways, cellular processes and osteogenic-associated markers involved are diverse. In addition, VIC-mediated calcification appears to involve biological processes related to osteo-chondro differentiation and down regulation of actin cytoskeleton genes, that are not observed in VSMCs. Furthermore, are findings suggest that signaling pathways involved in cardiovascular cell calcification are dependent on the calcific-stimuli, including a requirement of PI3K signaling for OM-induced calcification, and not 2.5mM Phosphate. Together, this study provides a wealth of information suggesting that the pathogenesis of cardiovascular calcifications may be significantly more diverse than previously appreciated.
Project description:Aortic valve calcific disease (CAVD) is a common heart valve condition typically characterized by severe narrowing of the aortic valve. Our previous research has shown that circHIPK3 is downregulated in calcified aortic valve tissues and plays a role in regulating the progression of CAVD. To further investigate how circHIPK3 exerts its inhibitory effects on aortic valve calcification, we overexpressed circHIPK3 in aortic valve interstitial cells and conducted RNA-seq analysis, revealing that circHIPK3 regulates key factors in the Wnt signaling pathway. These findings contribute to a deeper understanding of the molecular mechanisms underlying CAVD, particularly the potential involvement of circRNAs in this disease.
Project description:Arachidonic and adrenic acids in the membrane play key roles in ferroptosis, but how these fatty acids are manipulated in cells is largely unknown. Here, we reveal that lipoprotein-associated phospholipase A2 (Lp-PLA2) controls intracellular phospholipid metabolism and contributes to ferroptosis resistance. A metabolic drug screen revealed that darapladib, an inhibitor of Lp-PLA2, synergistically induced ferroptosis in the presence of GPX4 inhibitors. Notably, darapladib was able to enhance ferroptosis under lipoprotein-deficient or serum-free conditions. Furthermore, Lp-PLA2 was located in the membrane and cytoplasm and suppressed ferroptosis, suggesting the critical role of intracellular Lp-PLA2. Lipidomic analysis showed that darapladib treatment or deletion of PLA2G7, which encodes Lp-PLA2, generally enriched phosphatidylethanolamine (PE) species and reduced lysophosphatidylethanolamine (lysoPE) species. Moreover, combination treatment with darapladib and PACMA31, a GPX4 inhibitor, efficiently inhibited tumour growth in a xenograft model. Our study suggests that inhibition of Lp-PLA2 is a potential therapeutic strategy to enhance ferroptosis in cancer treatment.
Project description:Calcification of the aortic valve leads to increased leaflet stiffness resulting in development of calcific aortic valve disease (CAVD); however, the underlying molecular and cellular mechanisms of calcification are poorly understood. Here, we investigated gene expressions in relation to valvular calcification and promotion of CAVD progression.
Project description:Purpose: Next Generation Sequencing Analysis has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare the transcriptomes between bone marrow HPC and LP sorted from early phase (E) and median phase (M) to find the changed genes in LP.