N6-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response
Ontology highlight
ABSTRACT: The integrated stress response (ISR) facilitates cellular adaptation to a variety of stress conditions via phosphorylation of the common target eIF2α. During ISR, the translation of certain stress-related mRNAs is upregulated in spite of global suppression of protein synthesis.The selective translation often relieson alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that,in response to amino acid starvation, the reinitiation of ATF4 is not only governed by eIF2α-controlled ternary complex availability, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). We demonstrate that m6A in the 5' untranslated region (5’ UTR) controls ribosome scanning and subsequent start codonselection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by mRNA methylation. Consistently, Fto-transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of 5’ UTR methylation in translational regulation of ISR at cellular and organismal levels.
Project description:Translation efficiency varies 1000-fold between different mRNAs, thereby strongly impacting protein expression. Translation of the master stress response gene ATF4 increases in response to stress, but the molecular mechanisms are not well understood. We discover here that translation initiation factors DENR, MCTS1 and eIF2D are absolutely required to induce ATF4 translation upon stress, by promoting translation reinitiation on the ATF4 5’UTR. Hence DENR and MCTS1 are important players in the cellular Integrated Stress Response. We find DENR and MCTS1 promote reinitiation after long uORFs with specific penultimate codons, due to the tRNA that remains attached to 40S ribosomes after translation termination. This provides a model for how DENR and MCTS1 promote translation reinitiation. Since cancer cells are exposed to many stresses, they require ATF4 for survival and proliferation. We find a strong correlation between DENR•MCTS1 expression and ATF4 activity across cancers. Additional oncogenes including a-Raf, c-Raf and Cdk4 have long uORFs and are translated in a DENR•MCTS1 dependent manner. This explains in part why DENR and MCTS1 are oncogenes.
Project description:The integrated stress response (ISR) is a conserved pathway which is activated by cells that are exposed to stress. In lung adenocarcinoma (LUAD), activation of the ATF4 branch of the ISR by particular oncogenic mutations has been linked to the regulation of amino acid metabolism. In the present study, we provide evidence for ATF4 activation across multiple stages and molecular subtypes of human LUAD. In response to extracellular amino acid limitation, LUAD cells with diverse genotypes broadly induce ATF4 in an eIF2α dependent manner, which can be blocked pharmacologically using the integrated stress response inhibitor (ISRIB). Although suppressing eIF2α or ATF4 can trigger different biological consequences, adaptive cell cycle progression and cell migration are particularly sensitive to inhibition of the ISR. These phenotypes specifically require the ATF4 target gene asparagine synthetase (ASNS), which maintains protein translation independently of the mTOR/PI3K pathway. Moreover, NRF2 protein levels and oxidative stress can be modulated by the ISR downstream of ASNS. Finally, we demonstrate that the ISR via ASNS controls the biosynthesis of select proteins, including the cell cycle regulator cyclin B1, which are associated with poor LUAD patient prognosis. Our findings uncover new regulatory layers of the ISR pathway and its control of proteostasis in lung cancer cells as they adapt to metabolic barriers during tumor progression.
Project description:We recently identified ISRIB as a potent inhibitor of the integrated stress response (ISR). ISRIB renders cells resistant to the effects of eIF2α phosphorylation and enhances long-term memory in rodents (10.7554/eLife.00498). Here we show by genome-wide in vivo ribosome profiling that translation of a restricted subset of mRNAs is induced upon ISR activation. ISRIB substantially reversed the translational effects elicited by phosphorylation of eIF2α and induced no major changes in translation or mRNA levels in unstressed cells. eIF2α phosphorylation-induced stress granule (SG) formation was blocked by ISRIB. Strikingly, ISRIB addition to stressed cells with pre-formed SGs induced their rapid disassembly, liberating mRNAs into the actively translating pool. Restoration of mRNA translation and modulation of SG dynamics may be an effective treatment of neurodegenerative diseases characterized by eIF2α phosphorylation, SG formation and cognitive loss. Ribosome profiling with paired RNA-seq
Project description:All cells respond to intrinsic and extrinsic stresses by reducing global protein synthesis and activating select gene programs necessary for survival. Here, we show the fundamental integrated stress response (ISR) is driven by the non-canonical cap-binding protein eIF3d which acts as a master effector to control core stress response orchestrators, the translation factor eIF2ɑ and the transcription factor ATF4. We find that during persistent stress, eIF3d activates translation of the protein kinase GCN2, inducing eIF2ɑ phosphorylation and inhibiting global protein synthesis. In parallel, eIF3d upregulates the m6A demethylase enzyme ALKBH5 to drive 5′ UTR-specific demethylation of stress response genes, including ATF4. Ultimately, this cascade converges on ATF4 expression by increasing mRNA engagement of translation machinery and enhancing ribosome bypass of upstream open reading frames. Our results reveal that eIF3d acts as a critical life-or-death decision point during adaptation to chronic stress and uncover a synergistic signaling mechanism in which translational cascades dynamically complement transcriptional amplification to control essential cellular processes.
Project description:In eukaryotic cells, many mRNAs possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumulating evidence suggests that some initiation factors, including eIF3, linger on the early elongating ribosome, forming an eIF3-80S complex. Very little is known how the eIF3 is carried along with the 80S during elongation and its implications in subsequent translation reinitiation. Here we report that eIF3a undergoes dynamic O-GlcNAc modification in response to nutrient starvation. Stress-induced de-O-GlcNAcylation promotes eIF3 retention on the elongating ribosome and facilitates reinitiation at downstream start codons. Eliminating the modification site from eIF3a via genome editing induces ATF4 reinitiation under the nutrient rich condition. Our findings illustrate a mechanism in balancing ribosome recycling and reinitiation, thereby linking integrated stress response and translational reprogramming.
Project description:In response to stress, eukaryotes activate the integrated stress response (ISR) via phosphorylation of eIF2α to promote the translation of pro-survival effector genes, such as GCN4 in yeast. Complementing the ISR is the Target of Rapamycin (TOR) pathway, which regulates eIF4E function. Here we probe translational control in the absence of eIF4E in Saccharomyces cerevisiae. Intriguingly, we find that loss of eIF4E leads to de-repression of GCN4 translation. In addition, we find that de-repression of GCN4 translation is neither accompanied by eIF2α phosphorylation nor reduction in initiator ternary complex. Our data suggest that when eIF4E levels are depleted, GCN4 translation is de-repressed via a unique mechanism that may involve faster scanning by the small ribosome subunit due to increased local concentration of eIF4A. Overall, our findings suggest that relative levels of eIF4F components are key to ribosome dynamics and may play important roles in translational control of gene expression.
Project description:The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that is commonly deregulated in human diseases. Here we find that mTORC1 controls a transcriptional program encoding amino acid transporters and metabolic enzymes through a mechanism also used to regulate protein synthesis. Bioinformatic analysis of mTORC1-responsive mRNAs identified a promoter element recognized by activating transcription factor 4 (ATF4), a key effector of the integrated stress response. ATF4 translation is normally induced by phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) through a mechanism that requires upstream open reading frames (uORFs) in the ATF4 5' UTR. mTORC1 also controls ATF4 translation through uORFs, but independent of changes in eIF2α phosphorylation. mTORC1 instead employs the 4E-binding protein (4E-BP) family of translation repressors. These results link mTORC1-regulated demand for protein synthesis with an ATF4-regulated transcriptional program that controls the supply of amino acids to the translation machinery.
Project description:Ribosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of B6J-nmf205-/- mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNA Arg(UCU) tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2α (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the eIF2α kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that the ISR attenuates neurodegeneration in B6J-nmf205-/- mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway. These results demonstrate the critical interplay between translation elongation and initiation in regulating neuron survival during cellular stress.
Project description:Ribosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of B6J-nmf205-/- mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNA Arg(UCU) tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2α (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the eIF2α kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that the ISR attenuates neurodegeneration in B6J-nmf205-/- mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway. These results demonstrate the critical interplay between translation elongation and initiation in regulating neuron survival during cellular stress.
Project description:The molecular mechanisms linking the stress of unfolded proteins in the endoplasmic reticulum (ER stress) to glucose intolerance in obese animals are poorly understood. In this study enforced expression of a translation initiation 2α (eIF2α)-specific phosphatase, GADD34, was used to selectively compromise signaling in the eIF2(αP)-dependent arm of the ER unfolded protein response in liver of transgenic mice. The transgene resulted in lower liver glycogen levels and susceptibility to fasting hypoglycemia in lean mice and glucose tolerance and diminished hepato-steatosis in animals fed a high fat diet. Attenuated eIF2(αP) correlated with lower expression of the adipogenic nuclear receptor PPARγ and its upstream regulators, the transcription factors C/EBPα and C/EBPβ, in transgenic mouse liver, whereas eIF2α phosphorylation promoted C/EBP translation in cultured cells and primary hepatocytes. These observations suggest that eIF2(αP)-mediated translation of key hepatic transcriptional regulators of intermediary metabolism contributes to the detrimental consequences of nutrient excess. Keywords: genotype comparison The low expressing Ttr::Fv2E-Perk transgene (#58) was bred into the Atf4 knockout strain and the derivative compound heterozygous mice (in the mixed FvB/n; Swiss Webster background) were backcrossed to the Atf4+/- parental stock and Ttr::Fv2E-PERK positive siblings with Atf4+/+ and Atf4-/- genetypes were analyzed.