Mechanisms of tolerance and resistance to EGFR inhibition in lung cancer [RNA-seq]
Ontology highlight
ABSTRACT: Purpose: Multiple mechanims have been proposed that lead to reduced effectiveness of EGFR tyrosine kinase inhibitors (TKIs) in lung cancer and yet resistance to osimertinib and gefitinib still remains a challenge in the clinic. The goals of this study are to identify key genes contributing to tolerance and resistance to EGFR inhibition. Methods: mRNA profiles of gefitinib and osimertinib tolerant cells in PC9 and HCC827 cells were generated by deep sequencing using Illumina. In addition, mRNA profiles of cells (AALE, PC9 and HCC827) overexpressing with miR-147b or miR-21 and mRNA profiles of cells (H1975 and PC9ER) with miR-147b and miR-21 knocking down were generated by deep sequencing. The mappable reads were aligned to the human transcripts using Bowtie2 and gene abundance was estimated using RSEM. Results: Upregulation of miR-147b and miR-21 expression is related to tolerance and resistance to gefitinib and osimertinib in lung cancer. The signaling pathways of transcripts by knocking down miR-147b or miR-21 in resistant cells (H1975 and PC9ER) and by overexpressing miR-147b or miR-21 in both sensistive cells (HCC827 and PC9) and immortalized lung epithelial cells (AALE) are consistent with the key signaling pathways shown in tolerant cells to gefitinib and osimertinib in HCC827 and PC9 cells (HCC827GTR/OTR vs HCC827 and PC9GTR/OTR vs PC9). Conclusions: Our work identifies key signaling pathways that mediate EGFR-TKI tolerance and resistance in lung cancer. Our study provides potential targets to improve the efficacy of EGFR-TKIs therapy in cancer pagtients.
ORGANISM(S): Homo sapiens
PROVIDER: GSE103350 | GEO | 2018/01/11
SECONDARY ACCESSION(S): PRJNA401844
REPOSITORIES: GEO
ACCESS DATA