OMICS assisted N-terminal proteoform and protein expression profiling upon methionine aminopeptidase 1 (MetAP1) deletion
Ontology highlight
ABSTRACT: Excision of the N-terminal initiator methionine (iMet) residue from nascent peptide chains is an essential and omnipresent protein modification carried out by methionine aminopeptidases (MetAPs) that accounts for a major source of N-terminal proteoform diversity. While MetAP2 is known to be implicated in processes such as angiogenesis and proliferation in mammals, the physiological role of MetAP1 is much less clear. In this report we studied the omics-wide effects of human MetAP1 deletion and general MetAP inhibition. The levels of iMet retention are inversely correlated with cellular proliferation rates. Further, despite the increased MetAP2 expression observed upon MetAP1 deletion and as inferred from the iMet retention profiles observed, MetAP2 was unable to restore processing of MS-, MP- and MA- N-termini, indicating the higher activity of MetAP1 over these N-termini. Proteome and transcriptome expression profiling point to differential expression of proteins implicated in lipid metabolism, cytoskeleton organization, cell proliferation and protein synthesis upon perturbation of MetAP activity.
Project description:Excision of the N-terminal initiator methionine (iMet) from nascent peptide chains is an essential and omnipresent protein modification carried out by Methionine aminopetidases (MetAPs) and accounting for a major source of N-terminal proteoform diversity. While MetAP2 is known to be implicated in processes such as angiogenesis and proliferation in mammals, the physiological role of MetAP1 is much less clear. In this report we studied the omics-wide effects of MetAP1 deletion and MetAP inhibition in general. While the levels of iMet retention are inversely correlated with cellular proliferation rates, deletion of MetAP1 was in part rescued by the increased MetAP2 expression and activity profiles observed.
Project description:Fumagillin and its derivatives are therapeutically-useful compounds for their capacity to reduce cancer progression. Fumagillin exerts a specific proliferation inhibition on endothelial cell lines and on several tumor lines. The specific molecular target of fumagillin is MetAP2, one of the two cytosolic MetAPs. MetAPs are in charge of N-terminal Methionine Excision, an essential pathway of cotranslational protein maturation. Why the inhibition of MetAP2 causes cell growth arrest in a subset class of cells is yet unknown. Here, we focus on a global large scale characterization of the N-terminal Methionine Excision pathway and the inhibition of one of its enzymes by fumagillin in a number of lines including cancer cell lines. N-termini profiling of responsive and unresponsive cells to fumagillin treatment was conducted using large scale proteomics approach
Project description:To understand the impact of alternative translation initiation on a proteome, we performed the first large-scale study of protein turnover rates in which we distinguish between N-terminal proteoforms pointing to translation initiation events. Using pulsed SILAC combined with N-terminal COFRADIC we monitored the stability of 1,941human N-terminal proteoforms, including 147 proteoform pairs with heterogeneous N-termini originating from the same gene that result from alternative translation initiation and incomplete processing of the initiator methionine. N-terminally truncated proteoforms were on average less abundant than canonical proteoforms, many had different stabilities and exhibited both faster and slower turnover rates compared to their canonical counterparts. These differences in stability did not depend on the length of truncation but on individual protein characteristics. In silico simulation of N-terminal proteoforms in macromolecular complexes revealed possible consequences for complex integrity such as replacement of unstable canonical subunits. The extent of intrinsic disorder in N-terminal protein structures correlated with turnover times, indicating that a change in the structural flexibility of protein N-termini in truncated proteoforms might impact proteoform stability. Interestingly, removal of the initiator methionine by methionine aminopeptidases reduced the stability of processed proteoforms while susceptibility for N-terminal acetylation, another common co-translational modification, did not seem to impact on turnover rates. Taken together, our findings reveal differences in protein stability between N-terminal proteoforms and point to a role for alternative translation initiation and co-translational initiator methionine removal in the overall regulation of proteome homeostasis.
Project description:To understand the impact of alternative translation initiation on a proteome, we performed the first study on protein turnover using positional proteomics and ribosome profiling to distinguish between N-terminal proteoforms of individual genes. Overall, we monitored the stability of 1,941 human N-terminal proteoforms, including 147 N-terminal proteoform pairs that originate from alternative translation initiation, alternative splicing or incomplete processing of the initiator methionine. Ribosome profiling of lactimidomycin and cycloheximide treated human Jurkat T-lymphocytes
Project description:To understand the impact of alternative translation initiation on a proteome, we performed the first study on protein turnover using positional proteomics and ribosome profiling to distinguish between N-terminal proteoforms of individual genes. Overall, we monitored the stability of 1,941 human N-terminal proteoforms, including 147 N-terminal proteoform pairs that originate from alternative translation initiation, alternative splicing or incomplete processing of the initiator methionine.
Project description:Various forms of the protein, called proteoform, are generated by co- or post-translational modification, alternative splicing and alternative translation initiation site, resulting in interactions between ribosomes, mRNAs, tRNAs, and various enzymes. Here, we introduce a N-terminal peptide enrichment method (Nrich) using a negative selection on filter for the N-terminal peptides with two chemical reagents for labeling free amine and two endoproteases. We identified 6,525 acetylated (or partially acetylated) and 6,570 free protein N-termini from 5,727 proteins. The protein N-termini can be classified into nine groups, such as initial methionine removed or retained, non-terminal residue, signal/transit/pro-peptide removal, putative alternative translational initiation site (methionine removed or retained) and unknown processing, suggesting various proteoform in vivo. In addition, novel protein N-termini was identified in 5`-UTR sequence with pseudo start codon using customized database. Nrich can obtain information about protein stability, localization and function through the observation of finished N-terminal sequence of mature protein.
Project description:To understand the impact of alternative translation initiation on a proteome, we performed the first large-scale study of protein turnover rates in which we distinguish between N-terminal proteoforms pointing to translation initiation events. Using pulsed SILAC combined with N-terminal COFRADIC we monitored the stability of 1,941human N-terminal proteoforms, including 147 proteoform pairs with heterogeneous N-termini originating from the same gene that result from alternative translation initiation and incomplete processing of the initiator methionine. N-terminally truncated proteoforms were on average less abundant than canonical proteoforms, many had different stabilities and exhibited both faster and slower turnover rates compared to their canonical counterparts. These differences in stability did not depend on the length of truncation but on individual protein characteristics. In silico simulation of N-terminal proteoforms in macromolecular complexes revealed possible consequences for complex integrity such as replacement of unstable canonical subunits. The extent of intrinsic disorder in N-terminal protein structures correlated with turnover times, indicating that a change in the structural flexibility of protein N-termini in truncated proteoforms might impact proteoform stability. Interestingly, removal of the initiator methionine by methionine aminopeptidases reduced the stability of processed proteoforms while susceptibility for N-terminal acetylation, another common co-translational modification, did not seem to impact on turnover rates. Taken together, our findings reveal differences in protein stability between N-terminal proteoforms and point to a role for alternative translation initiation and co-translational initiator methionine removal in the overall regulation of proteome homeostasis.
Project description:Peptidases are known to play key roles in multiple biological processes in all living organisms. In a model plant Arabidopsis, the vast majority of many putative aminopeptidases remain uncharacterized. We therefore aim to explore physiological function of uncharacterized aminopeptidase in higher plants using Arabidopsis as a model to study.We performed functional and expression analyses of the Arabidopsis LAP2 through cDNA cloning, isolation of T-DNA insertional mutants, characterization of the enzymatic activity, characterization of gene expression, and transcriptomic and metabolomic analyses of the mutants. We found that LAP2, one of the 28 aminopeptidases in Arabidopsis, regulates plant growth, leaf longevity and stress response by controlling intracellular protein turnover. Loss-of-function alleles of LAP2 reduced in vegetative growth, accelerated leaf senescence and rendered plants more sensitive to various stresses. LAP2 is highly expressed in the quiescent center cells in the root meristem, cotyledons and leaf veins. Integration of global gene expression and metabolite analyses suggest that LAP2 controlled intracellular protein turnover. The mutant maintained free leucine by up-regulating key genes for leucine biosynthesis, however, this influenced the flux of glutamate strikingly. As a result, gamma-aminobutyric acid, a metabolite which is derived from glutamate, was diminished in the mutant. Decrements in these nitrogen-rich compounds are associated with morphological alterations and stress sensitivity of the mutant.Our results provide molecular and biochemical evidence that LAP2 is indeed an enzymatically active aminopeptidase. LAP2 plays key roles in senescence, stress response and protein turnover. Regulated proteolysis is an important mechanism in all stages of the plant life cycle. The present study would contribute to further understanding of the aminopeptidases which have several implications in higher plants.
Project description:Co-translational N-terminal (Nt-) acetylation of nascent polypeptides is catalyzed by N-terminal acetyltransferases (NATs). The very N-terminal amino acid sequence is the major factor determining whether or not a given protein is Nt-acetylated. In humans, six different NATs, denoted NatA-NatF, are identified. In the current study we used N-terminal COFRADIC analysis to define the in vivo substrate specificity of Naa50 (Nat5)/NatE as this has long remained elusive. Three yeast strains were generated; a control strain endogenously expressing yNaa50, a deletion strain depleted of yNaa50 and a strain deleted of yNaa50 but ectopically expressing human Naa50. When comparing the Nt-acetylation status of different N-termini in the control strain with the deletion strain, a reduction in Nt-acetylation for several yeast proteins was observed. To our surprise, these substrates were not of the predicted NatE-type substrates, but rather canonical NatA substrates. Further, ectopic expression of hNaa50 mainly resulted in the Nt-acetylation of a selected class of otherwise Nt-free yeast N-termini besides increasing the degree of Nt-acetylation of several other yeast proteins, and as such (partially) complementing those N-termini displaying reduced Nt-acetylation upon yNAA50-deletion. The preferred substrates of hNaa50 were predominantly Met-starting N-termini including Met-Lys-, Met-Val-, Met-Ala-, Met-Tyr-, Met-Phe-, Met-Leu-, Met-Ser- and Met-Thr, and highly overlapped with the previously identified human Naa60/NatF substrate specificity profile. Identification of several hNaa50 substrates with a small amino acid in the second position also revealed a potential interplay between the NATs and methionine aminopeptidases (MetAPs). The initiator Methionine (iMet) is normally cleaved off by MetAPs when the second amino acid is small, but our in vitro data suggest that in contrast to a free iMet, an Nt-acetylated iMet is not hydrolyzed by MetAPs. Thus, Naa50-mediated Nt-acetylation may potentially act as a mechanism to retain the iMet of proteins with a small amino acid at the second position that normally would be hydrolyzed.