Concerted metabolic shifts give new insights into the syntrophic mechanism between propionate-fermenting Pelotomaculum thermopropionicum and hydrogenotrophic Methanocella conradii
Ontology highlight
ABSTRACT: Purpose: To understand the adaptive mechanisms of Methanocellales to low H2 and syntrophic growth. Methods: We analyzed the transcriptomes of M. conradii and P. thermopropionicum under monoculture and syntrophic coculture conditions by strand specific mRNA sequencing using Illumina Hiseq 2000. Four biological replicates were sequenced. The sequence reads that passed quality filters were analyzed by Burrows–Wheeler Aligner (BWA) followed by HTSeq and DESeq2. qRT–PCR validation was performed using SYBR Green assays Results: The results showed that M. conradii and P. thermopropionicum interacted closely and synchronized their gene transcription during the syntrophic growth. In coculture, M. conradii and P. thermopropionicum significantly enhanced the transcription of genes related to energy conservation processes, including methanogenesis, propionate degradation and electron bifurcation. By contrast, the genes coding for biosynthesis steps were downregulated in both M. conradii and P. thermopropionicum during the syntrophic growth. The physiology experiment showed that formate but not H2 inhibited syntrophic oxidation of propionate. Accordingly, formate dehydrogenase-encoding genes in both M. conradii and P. thermopropionicum were markedly upregulated, indicating that formate plays an important role in the interspecies electron transfer between M. conradii and P. thermopropionicum in coculture. Conclusions: our study provides abundant transcriptome data indicating the adaptations of Methanocella spp. to H2 limitation and suggests that flavin based electron bifurcations are critical to the syntrophic growth in both M. conradii and P. thermopropionicum.
ORGANISM(S): Methanocella conradii Pelotomaculum thermopropionicum
PROVIDER: GSE103596 | GEO | 2018/01/01
SECONDARY ACCESSION(S): PRJNA402040
REPOSITORIES: GEO
ACCESS DATA