Microarray analysis of Human Epidermal Keratinocytes, neonatal (HEKn) exposed to solar-simulated visible and ultraviolet radiation with and without sunscreen protection.
Ontology highlight
ABSTRACT: Kertinocyte cultures grown in 60 mm petri dishes were placed 186 mm from the solar simulator source (Solar-simulated ultraviolet radiation 1600W Xenon short arc lamp with an Oriel Air Mass 1 Direct Filter, (AM1:D:B; model 81074) and KG2 Short Pass Filter. irradiance 9.84 mW/cm² for UVA (98.3%), 0.174 mW/cm² for UVB (1.7%) and 10 mW/cm² (0.017 mW/cm² erythemally-weighted) for the total UVR irradiance) and received a dose of either 0, 10, 20 and 150 kJ/m2 of unweighted ultraviolet radiation and 0, 10 and 150 kJ/m2 of unweighted ultraviolet radiation with SPF 15 sunscreen filtration (Homosalate 3%, Octisalate 4%, Avobenzone 2%, Titanium dioxide 0.66%) (2 mg/cm2 sandwiched between two 5x5 inch quartz plates) and were temperature controlled at 37oC using a customized water-bath. Six and Twenty-four hours post-exposure cells were harvested and RNA was extracted and subjected to microarray analysis.
Project description:The experiment was performed to search for genes regulated by the UV RESISTANT LOCUS (UVR8) under solar ultraviolet radiation (UV).
Project description:Despite widespread use of sunscreens that minimize erythema by blocking ultraviolet B (UVB) radiation, incidence rates of melanoma continue to rise. In considering this disparity between intervention and disease prevalence, we investigated the in vivo transcriptome of human skin treated with sunscreen and solar-simulated radiation (ssR). A focal skin area of healthy participants was exposed to ssR at 1 minimal erythema dose (MED), 0.1 MED or 100 J/m2 with or without prior application of sunscreen, or to non-UVB-spectrum of ssR (solar-simulated UVA/visible/infrared radiation: ssA). Skin biopsies were analyzed using expression microarrays.
Project description:Carbaryl (1-naphthyl-methylcarbamate), a broad-spectrum insecticide, has recently been associated with the development of cutaneous melanoma in an epidemiological cohort study with U.S. farm workers also exposed to ultraviolet radiation, which is known to be the main etiologic factor for skin carcinogenesis. Although comprehensive and well designed, the agricultural epidemiological study was not sufficient to characterize the direct contribution of the insecticide and solar radiation in melanomagenesis. Several studies have explored the synergistic effect of certain chemicals with UV radiation, increasing its deleterious effects on the skin. We hypothesized that carbaryl exposure associated with UV solar radiation may induce melanocyte transformation. This study aimed to characterize human melanocytes after individual or combined exposure to carbaryl (100 μM) and solar radiation (375 mJ/cm2). In a microarray analysis, carbaryl, but not solar radiation, induced an important oxidative stress response, evidenced by the upregulation of antioxidant genes, such as Hemeoxygenase-1 (HMOX1), and downregulation of Microphtalmia-associated Transcription Factor (MITF), the main regulator of melanocytic activity; results were confirmed by qRT-PCR. Carbaryl and solar radiation induced a gene response suggestive of DNA damage and cell cycle alteration. The expression of genes in these categories was notably more intense in the combined treatment group, in a synergistic manner, for CDKN1A, BRCA1/2 and MDM2 genes. Likewise, flow cytometry assays demonstrated S-phase cell cycle arrest, reduced apoptosis levels and faster induction of cyclobutane pyrimidine dimers (CPD) lesions in carbaryl treated groups. Our data suggests that carbaryl is genotoxic to human melanocytes, especially when associated with solar radiation.
Project description:The aim of this study was to investigate cutaneous cellular and molecular events in the photodermatoses (including solar urticaria and photoaggravated atopic dermatitis) following solar simulated ultraviolet radiation (SSR) exposure, and this dataset comprised the healthy controls (HC). Cutaneous biopsies were taken from unexposed skin and from skin exposed to a single low (physiological) dose of SSR, at 30 minutes, 3 hours, 24 hours and 72 hours post-exposure, in n=6 HC. Biopsies were assessed by immunohistochemistry (n=6 HC) and RNA-sequencing analysis (n=4 HC).
Project description:The Zygnematophyceae are the closest algal relatives of land plants and hence interesting to understand land plant evolution. Species of the genus Serritaenia have an aerophytic lifestyle and form colorful, mucilaginous capsules, which surround the cells and block harmful solar radiation. Under laboratory conditions the production of this “sunscreen mucilage” can be induced by ultraviolet B radiation. The present dataset reveals insights into the cellular reaction of this alga to UV radiation (a major stressor in terrestrial habitats) and allows for comparisons with other algae and land plants to draw evolutionary conclusions.
Project description:In the present study we have used a new custom made Affymetrix GrapeGen GeneChip to investigate gene expression responses of grapevine cultivar Malbec to one dose of biologically effective UV-B radiation (4.75 kJ m-2 d-1), administered at two different intensities (16 h, to 8.25 µW cm-2 or 4 h, to 33 µW cm2 UV-B).
Project description:Despite widespread use of sunscreens that minimize erythema by blocking ultraviolet B (UVB) radiation, incidence rates of melanoma continue to rise. In considering this disparity between intervention and disease prevalence, we investigated the in vivo transcriptome of human skin treated with sunscreen and solar-simulated radiation (ssR). A focal skin area of healthy participants was exposed to ssR at 1 minimal erythema dose (MED), 0.1 MED or 100 J/m2 with or without prior application of sunscreen, or to non-UVB-spectrum of ssR (solar-simulated UVA/visible/infrared radiation: ssA). Skin biopsies were analyzed using expression microarrays. Ninety-eight microarrays from 14 healthy human volunteers were analyzed. Focal skin areas of all 14 volunteers were exposed to 0 J/m2, 100 J/m2, 1 minimal erythema dose (MED), and 0.1 MED of solar-simulated radiation (ssR). Eight of the 14 volunteers (Group 1) were also exposed to ssA (ssR minus UVB) that were generated by removing UVB from 0 J/m2, 100 J/m2, 1 minimal erythema dose (MED), and 0.1 MED of ssR. Additionally, 6 of the 14 volunteers (Group 2) were treated with sunscreen of sun protection factor (SPF) 15, and exposed to 0 J/m2, 100 J/m2, 1 minimal erythema dose (MED), and 0.1 MED of ssR. Biopsy was taken 24 hours after exposure from each focal skin area for RNA extraction.
Project description:Ultra-violet (UV) and high-intensity visible (VIS) radiation are environmental stressors known to harm photosynthetic organisms through the generation of reactive intermediates that damage photosynthetic machinery. This study shows the potential of using a thermoacidophilic red alga of the order Cyanidiales to model in situ algal gene expression dynamics as a function of UV exposure and seasonal shifts in UV-VIS intensity. These algae exhibit a dynamic seasonal biomass fluctuation referred to as 'mat decline' where viability drastically decreases as seasonal UV-VIS irradiance intensity increases. In Yellowstone National Park (YNP), temporal experiments coupling UV irradiance manipulations (filtering) with whole-community transcription profiling revealed significant cyanidial gene expression changes occurring as a result of exposure to UV, and that patterns of response adjust across low and high irradiance time periods. Separate analyses examined genes responding to either increasing seasonal UV or VIS intensity, or by the combined effects of both irradiance wavelengths (UV and VIS). Results not only corroborated known physiological changes to solar irradiance, but also suggested the strategies employed to deal with excess VIS and UV intensity may be highly integrated. Finally, a suite of comparative analyses determined the relative utility of environmental transcriptomics technologies in studying ecologically-relevant expression patterns. Results suggest in situ expression profiles will improve understanding of how photosynthetic organisms are responding to environmental stressors as they are observed in nature. 16 samples with 3 biological replicates each.
Project description:Ultra-violet (UV) and high-intensity visible (VIS) radiation are environmental stressors known to harm photosynthetic organisms through the generation of reactive intermediates that damage photosynthetic machinery. This study shows the potential of using a thermoacidophilic red alga of the order Cyanidiales to model in situ algal gene expression dynamics as a function of UV exposure and seasonal shifts in UV-VIS intensity. These algae exhibit a dynamic seasonal biomass fluctuation referred to as 'mat decline' where viability drastically decreases as seasonal UV-VIS irradiance intensity increases. In Yellowstone National Park (YNP), temporal experiments coupling UV irradiance manipulations (filtering) with whole-community transcription profiling revealed significant cyanidial gene expression changes occurring as a result of exposure to UV, and that patterns of response adjust across low and high irradiance time periods. Separate analyses examined genes responding to either increasing seasonal UV or VIS intensity, or by the combined effects of both irradiance wavelengths (UV and VIS). Results not only corroborated known physiological changes to solar irradiance, but also suggested the strategies employed to deal with excess VIS and UV intensity may be highly integrated. Finally, a suite of comparative analyses determined the relative utility of environmental transcriptomics technologies in studying ecologically-relevant expression patterns. Results suggest in situ expression profiles will improve understanding of how photosynthetic organisms are responding to environmental stressors as they are observed in nature.