Genome-wide expression profiling after TRRAP silencing in Burkitt's lymphoma
Ontology highlight
ABSTRACT: Silencing of the histone acetyltransferase (HAT) complex member TRRAP in Burkitt’s lymphoma results in a significant deregulation of histone deacetylase (HDAC)-related gene sets.
Project description:Brain homeostasis is regulated by the viability and functionality of neurons. HAT (histone acetyltransferase) and HDAC (histone deacetylase) inhibitors have been applied to treat neurological deficits in humans; yet, the epigenetic regulation in neurodegeneration remains elusive. Mutations of HAT cofactor TRRAP (Transformation/translation domain-associated protein) cause human neuropathies, including psychosis, intellectual disability, autism and epilepsy, with unknown mechanism. Here we show that Trrap deletion in Purkinje neurons results in neurodegeneration of old mice. Integrated transcriptomics, epigenomics and proteomics reveal that TRRAP via SP1 conducts a conserved transcriptomic program. TRRAP is required for SP1 binding at the promoter proximity of target genes, especially microtubule dynamics. The ectopic expression of Stathmin3/4 ameliorates defects of TRRAP-deficient neurons, indicating that the microtubule dynamics is particularly vulnerable to the action of SP1 activity. This study unravels a network linking three well-known, but up-to-date unconnected, signaling pathways, namely TRRAP, HAT and SP1 with microtubule dynamics, in neuroprotection.
Project description:The acetylation levels of histones and other proteins change during aging and have been linked to neurodegeneration. Here we show that deletion of the histone acetyltransferase (HAT) co-factor Trrap specifically impairs the function of the transcription factor Sp1 and the recruitment of HATs to Sp1 target genes. Modulation of Sp1 function by Trrap acts as a hub regulating multiple processes involved in neuron and neural stem cells function and maintenance including microtubule dynamics and the Wnt signaling pathway. Consistently, Trrap conditional mutants exhibit all hallmarks of neurodegeneration including dendrite retraction and axonal swellings, neuron death, astrogliosis, microglia activation, demyelination and decreased adult neurogenesis. Our results uncovered a novel functional network, essential to prevent neurodegeneration, and involving the specific regulation of Sp1 transcription factor by Trrap-HAT.
Project description:Epigenetic control of neural stem/progenitor cell fate is fundamental to achieve a fully brain architecture. Two intrinsic programs regulate neurogenesis, one by epigenetic-mediated gene transcription and another by cell cycle control. Whether and how these two are coordinated to determine temporally and spatially neural development remains unknown. Here we show that deletion of Trrap (Transcription translation associated protein), an essential cofactor for HAT (histone acetyltransferase), leads to severe brain atrophy due to a combination of cell death and a blockade of neuron production. Specifically, Trrap deletion forces differentiation of apical progenitor (AP) fate into basal progenitors (BP) and neurons thereby limiting the total neurogenic production. Despite TrrapM-bM-^@M-^Ys general role in transcriptional regulation, a genome-wide transcriptome analysis of neuroprogenitors identified the cell cycle regulators that are specifically affected by Trrap deletion. Furthermore, E2F-dependent recruitment of HAT and transcription factors to the promoter of cell cycle regulators is impaired in Trrap-deleted neuroprogenitors. Consistent with these molecular changes, Trrap deletion lengthens particularly G1 and S phases in APs in vivo. Therefore, our study reveals an essential and a distinct function of Trrap-HAT in regulation of cell cycle progression that is required for proper determination of neuroprogenitor fate. Determine gene transcriptions by comparing Trrap-deleted and wild type samples
Project description:The acetylation levels of histones and other proteins change during aging and have been linked to neurodegeneration. Here we show that deletion of the histone acetyltransferase (HAT) co-factor Trrap specifically impairs the function of the transcription factor Sp1, reduces its stability and causes a decrease in histone acetylation at Sp1 target genes. Modulation of Sp1 function by Trrap acts as a hub regulating multiple processes involved in neuron and neural stem cells function and maintenance including microtubule dynamics and the Wnt signaling pathway. Consistently, Trrap conditional mutants exhibit all hallmarks of neurodegeneration including dendrite retraction and axonal swellings, neuron death, astrogliosis, microglia activation, demyelination and decreased adult neurogenesis. Our results uncovered a novel functional network, essential to prevent neurodegeneration, and involving the specific regulation of Sp1 transcription factor and its downstream targets by Trrap-HAT.
Project description:The acetylation levels of histones and other proteins change during aging and have been linked to neurodegeneration. Here we show that deletion of the histone acetyltransferase (HAT) co-factor Trrap specifically impairs the function of the transcription factor Sp1, reduces its stability and causes a decrease in histone acetylation at Sp1 target genes. Modulation of Sp1 function by Trrap acts as a hub regulating multiple processes involved in neuron and neural stem cells function and maintenance including microtubule dynamics and the Wnt signaling pathway. Consistently, Trrap conditional mutants exhibit all hallmarks of neurodegeneration including dendrite retraction and axonal swellings, neuron death, astrogliosis, microglia activation, demyelination and decreased adult neurogenesis. Our results uncovered a novel functional network, essential to prevent neurodegeneration, and involving the specific regulation of Sp1 transcription factor and its downstream targets by Trrap-HAT.
Project description:Epigenetic control of neural stem/progenitor cell fate is fundamental to achieve a fully brain architecture. Two intrinsic programs regulate neurogenesis, one by epigenetic-mediated gene transcription and another by cell cycle control. Whether and how these two are coordinated to determine temporally and spatially neural development remains unknown. Here we show that deletion of Trrap (Transcription translation associated protein), an essential cofactor for HAT (histone acetyltransferase), leads to severe brain atrophy due to a combination of cell death and a blockade of neuron production. Specifically, Trrap deletion forces differentiation of apical progenitor (AP) fate into basal progenitors (BP) and neurons thereby limiting the total neurogenic production. Despite Trrap’s general role in transcriptional regulation, a genome-wide transcriptome analysis of neuroprogenitors identified the cell cycle regulators that are specifically affected by Trrap deletion. Furthermore, E2F-dependent recruitment of HAT and transcription factors to the promoter of cell cycle regulators is impaired in Trrap-deleted neuroprogenitors. Consistent with these molecular changes, Trrap deletion lengthens particularly G1 and S phases in APs in vivo. Therefore, our study reveals an essential and a distinct function of Trrap-HAT in regulation of cell cycle progression that is required for proper determination of neuroprogenitor fate.
Project description:The G2 DNA damage checkpoint inhibits Cdc2 and mitotic entry through the dual regulation of Wee1 and Cdc25 by the Chk1 effector kinase. Up-regulation of Chk1 by mutation or overexpression bypasses the requirement for up-stream regulators or DNA damage to promote a G2 cell cycle arrest. We screened in fission yeast for mutations that rendered cells resistant to overexpressed Chk1. We identified a mutation in tra1, which encodes one of two homologs of TRRAP, an ATM/R-related pseudokinase that scaffolds several histone acetyltransferase (HAT) complexes. Inhibition of histone deacetylases reverts the resistance to overexpressed Chk1, suggesting this phenotype is due to a HAT activity, though expression of checkpoint and cell cycle genes is not greatly affected. Cells with mutant or deleted tra1 activate Chk1 normally and are checkpoint proficient. However, these cells are semi-wee even when overexpressing Chk1, and accumulate inactive Wee1 protein. The Cdr (changed division response) kinases Cdr1 and Cdr2 are negative regulators of Wee1, and while best characterized in the cellular response to limited nutrition, we show that they are required for the Tra1-dependent alterations to Wee1 function. This identifies Tra1 as another component controlling the timing of entry into mitosis via Cdc2 activation. Two and three independent microaaray experiments were done for wild type and the mutant (tra1-1) respectively.
Project description:The G2 DNA damage checkpoint inhibits Cdc2 and mitotic entry through the dual regulation of Wee1 and Cdc25 by the Chk1 effector kinase. Up-regulation of Chk1 by mutation or overexpression bypasses the requirement for up-stream regulators or DNA damage to promote a G2 cell cycle arrest. We screened in fission yeast for mutations that rendered cells resistant to overexpressed Chk1. We identified a mutation in tra1, which encodes one of two homologs of TRRAP, an ATM/R-related pseudokinase that scaffolds several histone acetyltransferase (HAT) complexes. Inhibition of histone deacetylases reverts the resistance to overexpressed Chk1, suggesting this phenotype is due to a HAT activity, though expression of checkpoint and cell cycle genes is not greatly affected. Cells with mutant or deleted tra1 activate Chk1 normally and are checkpoint proficient. However, these cells are semi-wee even when overexpressing Chk1, and accumulate inactive Wee1 protein. The Cdr (changed division response) kinases Cdr1 and Cdr2 are negative regulators of Wee1, and while best characterized in the cellular response to limited nutrition, we show that they are required for the Tra1-dependent alterations to Wee1 function. This identifies Tra1 as another component controlling the timing of entry into mitosis via Cdc2 activation.
Project description:Histone deacetylase (HDAC) inhibitors are part of a new generation of epigenetic drugs for cancer treatment. It is known that histone acetylation plays a key role in controlling essential chromosome functions, including gene regulation, and this process has been linked with cancer development and progression. Better understanding of molecular mechanisms involving HDAC inhibitors is needed for the design of new targeted drugs, and also to evaluate the effectiveness of current treatments. In this study, an untargeted metabolomics approach was used to identify intracellular metabolite deregulation after treating cancer cell lines with the HDAC inhibitor HC-Toxin. Metabolomics analysis was performed using high resolution mass spectrometry, in combination with univariate and multivariate statistics and pathway analysis. HDAC inhibition showed highly specific metabolic changes in cancer cell lines compared to non-cancerous cells. In particular, N-acetyl-L-cysteine, N-acetylmethionine, and N-acetyl-L-carnitine showed a dose dependent change. Moreover, pathways controlling protein biosynthesis, as well as tryptophan, cysteine and methionine metabolism were significantly altered by HDAC inhibition. This study illustrates that HDAC inhibition has multiple effects on different metabolic pathways and our results can be extrapolated to inform on the molecular transitions in human cells.
Project description:Histone acetylation and deacetylation are among the principal mechanisms by which chromatin is regulated during transcription, DNA silencing, and DNA repair. We analyzed patterns of genetic interactions uncovered during comprehensive genome-wide analyses in yeast to probe how histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes interact. The genetic interaction data unveil an underappreciated role of HDACs in maintaining cellular viability, and led us to show that deacetylation of the histone variant Htz1p at lysine 14 is mediated by Hda1p. Studies of the essential nucleosome acetyltransferase of H4 (NuA4) revealed acetylation-dependent protein stabilization of Yng2p, a potential nonhistone substrate of NuA4 and Rpd3C, and led to a new functional organization model for this critical complex. We also found that DNA double-stranded breaks (DSBs) result in local recruitment of the NuA4 complex, followed by an elaborate NuA4 remodeling process concomitant with Rpd3p recruitment and histone deacetylation. These new characterizations of the HDA and NuA4 complexes demonstrate how systematic analyses of genetic interactions may help illuminate the mechanisms of intricate cellular processes. Keywords: genetic modification The 44 datasets in this Series profiled the genome-wide genetic interactions for query genes encoding either HAT and HDAC catalytic subunits or subunits of the associated protein complexes. Of the 32 query genes, 5 were essential and were tested as temperature-sensitive (ts) alleles at three or more temperatures. (ESA1 was also tested as a hypomorphic allele.) The other query genes were tested as null deletion alleles derived from the Yeast Knockout strain collection.