Expression data from SOX9 overexpressing EndoC-ßH1 cells
Ontology highlight
ABSTRACT: Human ß cell dedifferentiation as a potent mechanism of diabetes is gaining prominence. Several data suggest an upregulation of the transcription factor SOX9, a progenitor and duct cell marker during ß cell dedifferentiation. However, its targets in such cells need more understanding. Here, we overexpressed SOX9 and a constitutively active mutant (VP16-SOX9∆TAD) in Human pancreatic beta EndoC-ßH1 cells in order to understand its targets.
Project description:Type 1 diabetes (T1D) is a chronic disease characterized by an autoimmune-mediated destruction of insulin-producing pancreatic β cells. Environmental factors such as viruses play an important role in the onset of T1D and interact with predisposing genes. Recent data suggest that viral infection of human islets leads to a decrease in insulin production rather than β cell death, suggesting loss of β cell identity. We undertook this study to examine whether viral infection could induce human ß cell dedifferentiation. Using the functional human β cell line EndoC-βH1, we demonstrate that polyinosinic-polycitidilic acid (PolyI:C), a synthetic double-stranded RNA that mimics a by-product of viral replication induces a decrease in β cell-specific gene expression. In parallel to this loss, the expression of progenitor-like genes such as SOX9 was activated following PolyI:C treatment or enteroviral infection. SOX9 was induced by the NF-kB pathway and also in a paracrine non-cell autonomous fashion through the secretion of IFNA. Finally, we identified new SOX9 targets in human β cells as new markers of dedifferentiation in T1D. These findings reveal that inflammatory signaling has clear implications in human β cell dedifferentiation.
Project description:We report RNA Seq analysis using Illumina nextSeq500 of human beta cells EndoC-BH1 treated with FGF2 to induce dedifferentiation. FGF2 treatment induced dedifferentiation of EndoC-BH1 cells. Indeed, we observed a strong decrease in expression of β-cell markers, (INS, MAFB, SLC2A2, SLC30A8 and GCK). Opposingly, we identifed positive markers of human β cell dedifferentiation, as attested by increased expression of mature β-cell disallowed transcription factors (MYC, HES1, SOX9 and NEUROG3). Interestingly, our temporal analysis revealed that loss of expression of β cell specific markers preceded the induction of β cell disallowed genes.
Project description:RFX6 is a key transcription factor for the development of mouse pancreas, however the functional roles of RFX6 in human beta cells are poorly explored. Thus transcriptome analysis was perfomed to determine the functional targets of RFX6 in human beta cells using the recently developed human beta cell-line EndoC-M-NM-2H2. Transcriptome profile of human beta cell line (EndoC-M-NM-2H2 cells) following siRNA induced knockdown of RFX6 is compared with siControl (siNT) treated EndoC-M-NM-2H2 cells.
Project description:The transcription factor SOX9 can act as a pioneering factor in driving lineage dedifferentiation and tumor progression for breast cancer. To investigate downstream pathways mediating SOX9 function and identify the direct gene targets of SOX9, we performed RNA-seq and SOX9 ChIP-seq on human breast cancer cell line MCF7ras ctrl and SOX9-overexpressing (SOX9OE) cells.
Project description:The transcription factor gene Sox9 plays various roles in development, including differentiation of the skeleton, testes, glia, and heart. Other functions of Sox9 remain enigmatic. Because Sox9 protein regulates expression of target genes, the identification of Sox9 targets should facilitate an understanding of the mechanisms of Sox9 action. To help identify Sox9 targets, we used microarray expression profiling to compare wild-type embryos to mutant embryos lacking activity for sox9a and sox9b, the zebrafish co-orthologs of Sox9. Candidate genes were further evaluated by whole mount in situ hybridization in wild-type and sox9 mutant embryos. Results identified genes expressed in cartilage (col2a1a and col11a2), retina (calb2a, calb2b, crx, neurod, rs1, sox4a and vsx1) and pectoral fin bud (klf2b and EST AI722369) as candidate targets for Sox9. Cartilage is a well-characterized Sox9 target, which validates this strategy, whereas retina represents a novel Sox9 function. Analysis of mutant phenotypes confirmed that Sox9 helps regulate the number of Müller glia and photoreceptor cells and helps organize the neural retina. These roles in eye development were previously unrecognized and reinforce the multiple functions that Sox9 plays in vertebrate development. In each experiment, RNA was isolated from 48h wildtype and sox9a, sox9b double mutant embryos and the gene expression profiles were compared using microarrays. Three biological replicate experiments were performed, and each biological replicate contained a dyeswap.
Project description:A major event in mammalian male sex determination is the induction of the testis determining factor Sry and its downstream gene Sox9. The current study provides one of the first genome wide analyses of the downstream gene binding targets for SRY and SOX9 to help elucidate the molecular control of Sertoli cell differentiation and testis development. A modified ChIP-Chip analysis using a comparative hybridization was used to identify 71 direct downstream binding targets for SRY and 109 binding targets for SOX9. Interestingly, only 5 gene targets overlapped between SRY and SOX9. In addition to the direct response element binding gene targets, a large number of atypical binding gene targets were identified for both SRY and SOX9. Bioinformatic analysis of the downstream binding targets identified gene networks and cellular pathways potentially involved in the induction of Sertoli cell differentiation and testis development. The specific DNA sequence binding site motifs for both SRY and SOX9 were identified. Observations provide insights into the molecular control of male gonadal sex determination. The current study provides one of the first genome wide analyses of the downstream gene binding targets for SRY and SOX9 to help elucidate the molecular control of Sertoli cell differentiation and testis development. At embryonic day 13 (E13) of pregnancy rats were euthanized and embryonic gonads were collected for chromatin. A modified ChIP-Chip analysis using a comparative hybridization was used to identify direct downstream binding targets for SRY and for SOX9. Then, bioinformatic analysis of the downstream binding targets was done to identify gene networks and cellular pathways that are potentially involved in the induction of Sertoli cell differentiation and testis development.
Project description:The transcription factor gene Sox9 plays various roles in development, including differentiation of the skeleton, testes, glia, and heart. Other functions of Sox9 remain enigmatic. Because Sox9 protein regulates expression of target genes, the identification of Sox9 targets should facilitate an understanding of the mechanisms of Sox9 action. To help identify Sox9 targets, we used microarray expression profiling to compare wild-type embryos to mutant embryos lacking activity for sox9a and sox9b, the zebrafish co-orthologs of Sox9. Candidate genes were further evaluated by whole mount in situ hybridization in wild-type and sox9 mutant embryos. Results identified genes expressed in cartilage (col2a1a and col11a2), retina (calb2a, calb2b, crx, neurod, rs1, sox4a and vsx1) and pectoral fin bud (klf2b and EST AI722369) as candidate targets for Sox9. Cartilage is a well-characterized Sox9 target, which validates this strategy, whereas retina represents a novel Sox9 function. Analysis of mutant phenotypes confirmed that Sox9 helps regulate the number of Müller glia and photoreceptor cells and helps organize the neural retina. These roles in eye development were previously unrecognized and reinforce the multiple functions that Sox9 plays in vertebrate development.
Project description:A major event in mammalian male sex determination is the induction of the testis determining factor Sry and its downstream gene Sox9. The current study provides one of the first genome wide analyses of the downstream gene binding targets for SRY and SOX9 to help elucidate the molecular control of Sertoli cell differentiation and testis development. A modified ChIP-Chip analysis using a comparative hybridization was used to identify 71 direct downstream binding targets for SRY and 109 binding targets for SOX9. Interestingly, only 5 gene targets overlapped between SRY and SOX9. In addition to the direct response element binding gene targets, a large number of atypical binding gene targets were identified for both SRY and SOX9. Bioinformatic analysis of the downstream binding targets identified gene networks and cellular pathways potentially involved in the induction of Sertoli cell differentiation and testis development. The specific DNA sequence binding site motifs for both SRY and SOX9 were identified. Observations provide insights into the molecular control of male gonadal sex determination.
Project description:We have developped a novel human pancreatic beta cell line: EndoC-βH5. EndoC-βH5 cells are ready-to-use and storable cells with physiological insulin secretion. EndoC-βH5 cells were generated by integrative gene transfer of immortalizing transgenes hTERT and SV40 large T along with Herpes Simplex Virus-1 thymidine kinase into human fetal pancreas. Immortalizing transgenes were removed after amplification using CRE activation and remaining non-excized cells eliminated using ganciclovir. Resulting cells were distributed as ready to use EndoC-βH5 cells. We performed comparative transcriptome analysis with EndoC-βH1 cells , extensive functional and immunological assays. RNA-seq confirmed abundant expression of beta cell transcription factors and functional markers, including incretin receptors.