Project description:We used RNA sequencing to measure genome-wide gene expression in the cyanobacterium Synechococcus elongatus PCC 7942 grown under dynamic light regimes that mimic the variation in light intensity seen on a Clear Day in nature, or the rapid changes in light intensity that accompany changes in shading We compare these gene expression dynamics to those of a culture grown under a Low Light condition that mimics the standard laboratory conditions used for study of cyanobacteria. Our analysis reveals that naturally relevant light conditions drastically modify gene expression dynamics in cyanobacteria Notably, the expression of circadian clock-controlled genes is responsive to changes in light intensity, showing modulated dynamics that can allow cyanobacteria to adapt their metabolism to changing environmental conditions
Project description:We used ChIP sequencing to measure genome-wide binding of transcription factors in the cyanobacterium Synechococcus elongatus PCC 7942 grown under dynamic light regimes that mimic the rapid changes in light intensity that accompany changes in shading. Our analysis reveals that rapid changes in light intensity modulate the binding of RNA polymerase (RNAP) upstream of genes in a way that correlates with changes in downstream gene expression, suggesting that changes in transcriptional regulation control light-responsive gene expression changes. Also, binding of the circadian clock-controlled transcription factor RpaA and the light-responsive transcription factor RpaB change upstream of genes in a manner correlating with RNAP enrichment and downstream gene expression. This suggests that changes in RpaA and RpaB binding upstream of genes regulate the light-responsive expression of genes in cyanobacteria.
Project description:The whole-genome sequence of the endosymbiotic bacterium Azorhizobium caulinodans ORS571, which forms nitrogen-fixing nodules on the stems and roots of Sesbania rostrata, was recently determined. The sizes of the genome and symbiosis island are 5.4 Mb and 86.7 kb, respectively, and these sizes are the smallest among the sequenced rhizobia. In the present study, a whole-genome microarray of A. caulinodans was constructed, and transcriptomic analyses were performed on free-living cells grown in rich and minimal media and in bacteroids isolated from stem nodules. Transcriptional profiling showed that the genes involved in sulfur uptake and metabolism, acetone metabolism, and the biosynthesis of exopolysaccharide were highly expressed in bacteroids compared to the expression levels in free-living cells. Some mutants having Tn5 transposons within these genes with increased expression were obtained as nodule-deficient mutants in our previous study. A transcriptomic analysis was also performed on free-living cells grown in minimal medium supplemented with a flavonoid, naringenin, which is one of the most efficient inducers of A. caulinodans nod genes. Only 18 genes exhibited increased expression by the addition of naringenin, suggesting that the regulatory mechanism responding to the flavonoid could be simple in A. caulinodans. The combination of our genome-wide transcriptional profiling and our previous genome-wide mutagenesis study has revealed new aspects of nodule formation and maintenance.
Project description:Hypoxia is an important nongenotoxic stress that modulates the tumor suppressor activity of p53 during malignant progression. In this study, we investigated how genotoxic and nongenotoxic stresses regulate p53 association with chromatin, p53 transcriptional activity, and p53-dependent apoptosis. We found that genotoxic and nongenotoxic stresses result in the accumulation and binding of the p53 tumor suppressor protein to the same cognate binding sites in chromatin. However, it is the stress that determines whether downstream signaling is mediated by association with transcriptional coactivators. In contrast to p53 induced by DNA-damaging agents, hypoxia-induced p53 has primarily transrepression activity. Using extensive microarray analysis, we identified families of repressed targets of p53 that are involved in cell signaling, DNA repair, cell cycle control, and differentiation. Following our previous study on the contribution of residues 25 and 26 to p53-dependent hypoxia-induced apoptosis, we found that residues 25-26 and 53-54 and the polyproline- and DNA-binding regions are also required for both gene repression and the induction of apoptosis by p53 during hypoxia. This study defines a new role for residues 53 and 54 of p53 in regulating transrepression and demonstrates that 25-26 and 53-54 work in the same pathway to induce apoptosis through gene repression.
Project description:The accumulation and production of biochemical compounds in microalgae are influenced by available light quality and algal species-specific features. In this study, four freshwater cryptophyte strains (Cryptomonas ozolinii, C. pyrenoidifera, C. curvata, and C. sp. (CPCC 336)) and one marine strain (Rhodomonas salina) were cultivated under white (control), blue, and green (experimental conditions) lights. Species-specific responses to light quality were detected, i.e., the color of light significantly affected cryptophyte biomass productivity and biochemical compositions, but the optimal light for the highest chemical composition with high antioxidant capacity was different for each algal strain. Overall, the highest phycoerythrin (PE) content (345 mg g-1 dry weight; DW) was reached by C. pyrenoidifera under green light. The highest phenolic (PC) contents (74, 69, and 66 mg g-1 DW) were detected in C. curvata under control conditions, in C. pyrenoidifera under green light, and in C. ozolinii under blue light, respectively. The highest exopolysaccharide (EPS) content (452 mg g-1 DW) was found in C. curvata under the control light. In terms of antioxidant activity, the biochemical compounds from the studied cryptophytes were highly active, with IC50 -values < 50 µg mL-1. Thus, in comparison to well-known commercial microalgal species, cryptophytes could be considered a possible candidate for producing beneficial biochemical compounds.
Project description:Climatic changes influence considerably the distribution and occurrence of different secondary metabolites in cereals. The aim of this investigation was to assess the changes in metabolite prevalence observed in six different winter barley varieties over a statistically significant period of three years by linking agro-climatic conditions with metabolite concentrations in chosen samples. The results showed that temperatures and precipitation levels varied during the observed timeframe and that the multi-toxin concentrations followed the trend of changing climatic conditions depending on the variety. All quantified (fungal) metabolites showed significant variations throughout the years and, for some (tryptophol and the cyclic dipeptides cyclo(L-Pro-L-Tyr) and cyclo(L-Pro-L-Val)), an unexpected, but clear connection can be made with temperature changes and precipitation levels during the growing season.
Project description:Foraging on flowers in low light at dusk and dawn comes at an additional cost for insect pollinators with diurnal vision. Nevertheless, some species are known to be frequently active at these times. To explore how early and under which light levels colonies of bumblebees, Bombus terrestris, initiate their foraging activity, we tracked foragers of different body sizes using RFID over 5 consecutive days during warm periods of the flowering season. Bees that left the colony at lower light levels and earlier in the day were larger in size. This result extends the evidence for alloethism in bumblebees and shows that foragers differ in their task specialization depending on body size. By leaving the colony earlier to find and exploit flowers in low light, larger-sized foragers are aided by their more sensitive eyes and can effectively increase their contributions to the colony's food influx. The decision to leave the colony early seems to be further facilitated by knowledge about profitable food resources in specific locations. We observed that experience accrued over many foraging flights determined whether a bee started foraging under lower light levels and earlier in the morning. Larger-sized bees were not more experienced than smaller-sized bees, confirming earlier observations of wide size ranges among active foragers. Overall, we found that most foragers left at higher light levels when they could see well and fly faster. Nevertheless, a small proportion of foragers left the colony shortly after the onset of dawn when light levels were below 10 lux. Our observations suggest that bumblebee colonies have the potential to balance the benefits of deploying large-sized or experienced foragers during dawn against the risks and costs of foraging under low light by regulating the onset of their activity at different stages of the colony's life cycle and in changing environmental conditions.