Project description:Background: Epigenetic processes play an important role in the plant response to adverse environmental conditions. A role for DNA hypomethylation has recently been suggested in the pathogenic interaction between bacteria and plants, yet it remains unclear whether this phenomenon reflects a conserved and general plant immunity response. We therefore investigated the role of DNA methylation in the plant defence against damaging parasitic nematodes. Methods and results: Treatment of roots of rice (monocot plant) and tomato (dicot plant) by a nematode-associated molecular pattern (NAMP) from different parasitic nematodes revealed global DNA hypomethylation using ELISA based quantification, suggesting conservation among plants. Focusing on root-knot induced gall tissue in rice, the causal impact of hypomethylation on immunity was revealed by a significantly reduced plant susceptibility upon 5-Azacitidine treatment. Whole genome bisulfite sequencing revealed that hypomethylation was massively present in the CHH context, while absent for CpG or CHG nucleotide contexts. CHH hypomethylated regions were predominantly associated with gene promoter regions, which was not correlated with activated gene expression at the same time point, but rather showed a delayed effect on transcriptional gene activation. Finally, the relevance of CHH hypomethylation in plant defence was confirmed in rice mutants of the RNA-directed DNA methylation pathway (RdDM) and DDM1, which are known to be steering DNA methylation in CHH context. Conclusions: We demonstrated that DNA hypomethylation confers enhanced defence in rice towards root-parasitic nematodes and is likely to be part of the basal NAMP-triggered immunity response in plants.
Project description:The present study evaluated the genome-wide methylation level of the medial basal hypothalamus using reduced representation bisulfite sequencing (RRBS) in female- and male-oriented rams.
Project description:We analysed by Reduced Representation Bisulfite Sequencing (RRBS) the genome methylation pattern in human fibroblast and in naïve induced pluripoent stem cells (niPSCs)
Project description:We intend to establish an efficient method for plasma cfDNA extraction and Bisulfite transformation to facilitate the detection of DNA methylation status using multiplex fluorescence PCR. Meanwhile, we expect to identify several plasma methylation markers that can be highly sensitive for multi-cancer detection. Finally, we will provide a pan-cancer blood test that is easy to operate, low cost, accurate and easy to promote.
Project description:We report here with this study the genome-wide DNA methylation level analysis at single-nucleotide resolution by Next Gen bisulfite-sequencing using the Methyl-MaxiSeq platform from Zymo Research Services (Irvine, CA) in plants overexpressing the gene 5-Methyltetrahydropteroyltriglutamate Homocysteine Methyltransferase1 (METS1) comparatively to Col-0 plants both basal conditions and following Pseudomonas syringae DC3000 infection.
Project description:DNA methylation plays critical roles in gene regulation and cellular specification without altering DNA sequences. The wide application of reduced representation bisulfite sequencing (RRBS) and whole genome bisulfite sequencing (bis-seq) opens the door to study DNA methylation at single CpG site resolution. One challenging question is how best to test for significant methylation differences between groups of biological samples in order to minimize false positive findings. Current methods to analyze genome-wide bisulfite sequencing data use a smoothing approach or a simple statistical test based on the binomial distribution.
Project description:Understanding the epigenetic control of normal differentiation programs might yield principal information about critical regulatory states that are disturbed in cancer. We utilized the established non-malignant HPr1-AR prostate epithelial cell model that upon androgen exposure commits to a luminal cell differentiation trajectory from that of a basal-like state. We profile the dynamic transcriptome associated with this transition at multiple time points (0hr, 1hr, 24hr, 96hr), and confirm that expression patterns are strongly indicative of a progressive basal to luminal cell differentiation program based on human expression signatures. Furthermore, we establish dynamic patterns of DNA methylation associated with this program by use of whole genome bisulfite sequencing (WGBS).
Project description:Understanding the epigenetic control of normal differentiation programs might yield principal information about critical regulatory states that are disturbed in cancer. We utilized the established non-malignant HPr1-AR prostate epithelial cell model that upon androgen exposure commits to a luminal cell differentiation trajectory from that of a basal-like state. We profile the dynamic transcriptome associated with this transition at multiple time points (0hr, 1hr, 24hr, 96hr), and confirm that expression patterns are strongly indicative of a progressive basal to luminal cell differentiation program based on human expression signatures. Furthermore, we establish dynamic patterns of DNA methylation associated with this program by use of whole genome bisulfite sequencing (WGBS).