DNA hypermethylation encroachment at CpG island borders in cancer is predisposed by H3K4 monomethylation [TAB-Seq]
Ontology highlight
ABSTRACT: DNA methylation plays a key role in demarcation of regulatory regions, including promoter-associated CpG islands. While CpG islands are typically maintained in an unmethylated state in normal cells, a proportion of CpG islands are subject to hypermethylation in cancer cells. It still remains elusive how the exquisite demarcation of the bimodal methylation state is established and maintained at the CpG island flanks and conversely what triggers the erosion of CpG island DNA methylation in tumorigenesis. Here, we applied whole-genome bisulphite sequencing to study the comprehensive methylation patterns of prostate normal and cancer tissues. Alongside we performed TET-assisted bisulphite sequencing to study genome-wide DNA hydroxymethylation patterns of normal prostate and prostate cancer tissues.
Project description:DNA methylation plays a key role in demarcation of regulatory regions, including promoter-associated CpG islands. While CpG islands are typically maintained in an unmethylated state in normal cells, a proportion of CpG islands are subject to hypermethylation in cancer cells. It still remains elusive how the exquisite demarcation of the bimodal methylation state is established and maintained at the CpG island flanks and conversely what triggers the erosion of CpG island DNA methylation in tumorigenesis. Here, we applied whole-genome bisulphite sequencing to study the comprehensive methylation patterns of prostate normal and cancer tissues. Alongside we performed TET-assisted bisulphite sequencing to study genome-wide DNA hydroxymethylation patterns of normal prostate and prostate cancer tissues.
Project description:Background: Researching the murine epigenome in disease models has been hampered by the lack of an appropriate and cost-effective DNA methylation array. Until recently, investigators have been limited to the relatively expensive and analysis intensive bisulphite sequencing methods. Here, we performed a comprehensive, comparative analysis between the new Mouse Methylation BeadChip (MMB) and reduced representation bisulphite sequencing (RRBS) in two murine models of colorectal carcinogenesis, providing insight into the utility to each platforms in a real world environment. Results: We captured 1.47x106 CpGs by RRBS and 2.64x105 CpGs by MMB, mapping to 13,778 and 13,365 CpG islands, respectively. RRBS captured significantly more CpGs per island (median 41 for RRBS versus 2 for MMB). We found that 64.4% of intra-island CpG methylation variability can be captured by measuring approximately one quarter of CpG island (CGI) CpGs. MMB was more precise in measuring DNA methylation, especially at sites that had low RRBS coverage. This impacted differential methylation analysis, with more statistically significantly differentially methylated CpG sites identified by MMB in all experimental conditions, however the difference was minute when appropriate thresholding for the magnitude of methylation change (0.2 beta value difference) was applied, providing confidence that both techniques can identify similar differential DNA methylation. Gene ontology enrichment analysis of differentially hypermethylated gene promoters identified similar biological processes and pathways by both RRBS and MMB across two murine model systems. Conclusion: MMB is an effective tool for profiling the murine methylome that performs comparably to RRBS, identifying similar differentially methylated pathways. Although MMB captures a similar proportion of CpG islands, it does so with fewer CpGs per island. We show that subsampling informative CpGs from CpG islands is an appropriate strategy to capture whole island variation. Choice of technology is experiment dependent and will be predicated on the underlying biology being probed.
Project description:Background: Researching the murine epigenome in disease models has been hampered by the lack of an appropriate and cost-effective DNA methylation array. Until recently, investigators have been limited to the relatively expensive and analysis intensive bisulphite sequencing methods. Here, we performed a comprehensive, comparative analysis between the new Mouse Methylation BeadChip (MMB) and reduced representation bisulphite sequencing (RRBS) in two murine models of colorectal carcinogenesis, providing insight into the utility to each platforms in a real world environment. Results: We captured 1.47x106 CpGs by RRBS and 2.64x105 CpGs by MMB, mapping to 13,778 and 13,365 CpG islands, respectively. RRBS captured significantly more CpGs per island (median 41 for RRBS versus 2 for MMB). We found that 64.4% of intra-island CpG methylation variability can be captured by measuring approximately one quarter of CpG island (CGI) CpGs. MMB was more precise in measuring DNA methylation, especially at sites that had low RRBS coverage. This impacted differential methylation analysis, with more statistically significantly differentially methylated CpG sites identified by MMB in all experimental conditions, however the difference was minute when appropriate thresholding for the magnitude of methylation change (0.2 beta value difference) was applied, providing confidence that both techniques can identify similar differential DNA methylation. Gene ontology enrichment analysis of differentially hypermethylated gene promoters identified similar biological processes and pathways by both RRBS and MMB across two murine model systems. Conclusion: MMB is an effective tool for profiling the murine methylome that performs comparably to RRBS, identifying similar differentially methylated pathways. Although MMB captures a similar proportion of CpG islands, it does so with fewer CpGs per island. We show that subsampling informative CpGs from CpG islands is an appropriate strategy to capture whole island variation. Choice of technology is experiment dependent and will be predicated on the underlying biology being probed.
Project description:DNA methylation is tightly regulated during development and is stably maintained in normal cells. In contrast, the methylome of cancer cells is commonly characterized by a global loss of DNA methylation co-occurring with CpG island hypermethylation. In acute lymphoblastic leukemia (ALL), the commonest childhood cancer, perturbations of CpG methylation have been reported to be associated with genetic disease subtype and outcome, but data examining large cohorts at genome-wide scale are lacking. Here, we performed whole-genome bisulfite sequencing of leukemic cells across multiple subtypes of ALL, leukemia cell lines and normal hematopoietic cells, and show that in contrast to most cancers, ALL samples only exhibit CpG island hypermethylation but minimal global loss of methylation. This was most pronounced in T-ALL and accompanied by an exceptionally broad range of hypermethylation of CpG islands between patients that is influenced by TET2 and DNMT3B. These findings demonstrate that ALL is characterized by an unusually highly methylated genome, and provide insights into the deregulation of methylation in cancer.
Project description:Engineering Pluripotent DNA Methylation by CpG Island Methylation Response (CIMR) to Synthetic CpG-free ssDNA Insertion Cellular differentiation requires global changes to DNA methylation (DNAme), where it functions to regulate transcription factor and chromatin remodeling activity, and genome interpretation. Here, we describe a simple DNAme engineering approach in pluripotent stem cells (PSCs), extending across large stretches of CpG dense “islands (CGIs).” Integration of synthetic CpG free single-stranded DNA (ssDNA) induces a target CpG Island Methylation Response (CIMR) in multiple PSC lines, Nt2d1 embryonal carcinoma cells, and mouse PSCs, but not in highly methylated CpG Island Methylator Phenotype (CIMP) positive cancer lines. CIMR DNAme at MLH1 spans the CGI, is robustly maintained throughout cellular differentiation, suppresses target gene activity, and sensitizes derived cardiomyocytes and thymic epithelial cells to the chemotherapy cisplatin. Additional CIMR DNAme is reported on at TP53 and ONECUT1 CGIs. Collectively, this new resource enables total CpG Island DNAme engineering in pluripotency and the genesis of novel epigenetic models of development and disease
Project description:Astrocytomas are common and lethal human brain tumors. Here, we have analyzed the methylation status of over 28,000 CpG islands and 18,000 promoters in normal human brain and in astrocytomas of various grades using the methylated-CpG island recovery assay (MIRA). We identified six to seven thousand methylated CpG islands in normal human brain. ~5% of the promoter-associated CpG islands in normal brain are methylated. Promoter CpG island methylation is inversely and intragenic methylation is directly correlated with gene expression levels in brain tissue. In astrocytomas, several hundred CpG islands undergo specific hypermethylation relative to normal brain with 428 methylation peaks common to more than 25% of the tumors. Genes involved in brain development and neuronal differentiation, such as POU4F3, GDNF, OTX2, NEFM, CNTN4, OTP, SIM1, FYN, EN1, CHAT, GSX2, NKX6-1, RAX, PAX6, DLX2, were strongly enriched among genes frequently methylated in tumors. There was an overrepresentation of homeobox genes and 31% of the most commonly methylated genes represent targets of the Polycomb complex. We identified several chromosomal loci in which many (sometimes more than 20) consecutive CpG islands were hypermethylated in tumors. Seven of such loci were near homeobox genes, including the HOXC and HOXD clusters, and the BARHL2, DLX1, and PITX2 genes. Two other clusters of hypermethylated islands were at sequences of recent gene duplication events. Our analysis offers mechanistic insights into brain neoplasia suggesting that methylation of genes involved in neuronal differentiation, perhaps in cooperation with other oncogenic events, may shift the balance from regulated differentiation towards gliomagenesis. Comparison of methylation patterns of 30 astrocytomas and 6 controls
Project description:Astrocytomas are common and lethal human brain tumors. Here, we have analyzed the methylation status of over 28,000 CpG islands and 18,000 promoters in normal human brain and in astrocytomas of various grades using the methylated-CpG island recovery assay (MIRA). We identified six to seven thousand methylated CpG islands in normal human brain. ~5% of the promoter-associated CpG islands in normal brain are methylated. Promoter CpG island methylation is inversely and intragenic methylation is directly correlated with gene expression levels in brain tissue. In astrocytomas, several hundred CpG islands undergo specific hypermethylation relative to normal brain with 428 methylation peaks common to more than 25% of the tumors. Genes involved in brain development and neuronal differentiation, such as POU4F3, GDNF, OTX2, NEFM, CNTN4, OTP, SIM1, FYN, EN1, CHAT, GSX2, NKX6-1, RAX, PAX6, DLX2, were strongly enriched among genes frequently methylated in tumors. There was an overrepresentation of homeobox genes and 31% of the most commonly methylated genes represent targets of the Polycomb complex. We identified several chromosomal loci in which many (sometimes more than 20) consecutive CpG islands were hypermethylated in tumors. Seven of such loci were near homeobox genes, including the HOXC and HOXD clusters, and the BARHL2, DLX1, and PITX2 genes. Two other clusters of hypermethylated islands were at sequences of recent gene duplication events. Our analysis offers mechanistic insights into brain neoplasia suggesting that methylation of genes involved in neuronal differentiation, perhaps in cooperation with other oncogenic events, may shift the balance from regulated differentiation towards gliomagenesis.
Project description:In mouse development, long-term silencing by CpG island DNA methylation is specifically targeted to germline genes, however the molecular mechanisms of this specificity remain unclear. Here we demonstrate that the transcription factor E2F6, a member of the polycomb repressive complex 1.6 (PRC1.6), is critical to target and initiate epigenetic silencing at germline genes in early embryogenesis. Genome-wide, E2F6 binds preferentially to CpG islands in embryonic cells. E2F6 cooperates with MGA to silence a subgroup of germline genes in mouse embryonic stem cells and in vivo, a function that critically depends on the E2F6 marked box domain. Inactivation of E2f6 leads to a failure to deposit CpG island DNA methylation at these genes during implantation. Furthermore, E2F6 is required to initiate epigenetic silencing in early embryonic cells but becomes dispensable for the maintenance in differentiated cells. Our findings elucidate the mechanisms of epigenetic targeting of germline genes and provide a paradigm for how transient repression signals by DNA-binding factors in early embryonic cells are translated into long term epigenetic silencing during mammalian development.
Project description:10% of methylation sites in CpG islands. In this study, the genome-wide CpG islands of human sperm, oocyte and pre-implantation embryos were analyzed using the almost complete coverage of promoters and CpG islands (most methylation-producing regions) methylation microarray method (MeDIP-Chip). Dynamic changes in methylation of sub-regions to understand the dynamic pattern of CpG island and promoter methylation, possible regulatory mechanisms of this methylation dynamic change, and function during early embryonic development.
Project description:Integration of synthetic CpG Free DNA induces de novo DNAme in the flanking CpG island. Cellular differentiation requires global changes to DNA methylation (DNAme), where it functions to regulate transcription factor and chromatin remodeling activity, and genome interpretation. Here, we describe a simple DNAme engineering approach in pluripotent stem cells (PSCs), extending across large stretches of CpG dense “islands (CGIs).” Integration of synthetic CpG free single-stranded DNA (ssDNA) induces a target CpG Island Methylation Response (CIMR) in multiple PSC lines, Nt2d1 embryonal carcinoma cells, and mouse PSCs, but not in highly methylated CpG Island Methylator Phenotype (CIMP) positive cancer lines. CIMR DNAme at MLH1 spans the CGI, is robustly maintained throughout cellular differentiation, suppresses target gene activity, and sensitizes derived cardiomyocytes and thymic epithelial cells to the chemotherapy cisplatin. Additional CIMR DNAme is reported on at TP53 and ONECUT1 CGIs. Collectively, this new resource enables total CpG Island DNAme engineering in pluripotency and the genesis of novel epigenetic models of development and disease