Project description:To identify the transcriptional targets of the DNA-binding response regulator HnoC (SO_2540), mRNA transcript levels in Shewanella oneidensis were measured using whole genome microarray analysis. Transcript levels were compared between WT Shewanella oneidensis and a hnoC deletion strain.
Project description:To identify the transcriptional targets of the DNA-binding response regulator HnoC (SO_2540), mRNA transcript levels in Shewanella oneidensis were measured using whole genome microarray analysis. Transcript levels were compared between WT Shewanella oneidensis and a hnoC deletion strain. Transcript levels of a WT and hnoC deletion strain were measured after 15 hrs growth, 4 independent replicates were performed for each strain
Project description:We investigated the anode-specific responses of Shewanella oneidensis MR-1, an exoelectroactive ammaproteobacterium, using for the first time iTRAQ and 2D-LC MS/MS driven membrane proteomics to compare protein abundances in S. oneidensis when generating power in MFCs, and growing in a continuous culture.
Project description:Shewanella oneidensis produces an extensive electron transfer network that results in metabolic flexibility. A large number of c-type cytochromes are expressed by S. oneidensis and these function as the fundamental electron transport chain proteins. Although several S. oneidensis cytochromes have been well-characterized, little is known about how their expression is regulated. In this study, we investigate the role of the ferric uptake regulator (Fur) and the sRNA RyhB in regulation. Our results demonstrate that loss of Fur leads to diminished growth and an apparent decrease in heme-containing proteins. Remarkably, deleting the Fur-repressed ryhB gene almost completely reverses these physiological changes, indicating that the phenotypes resulting from loss of Fur are (at least partially) dependent on RyhB. RNA sequencing identified a number of possible RyhB repressed genes. A large fraction of these encode c-type cytochromes, among them two of the most abundant periplasmic cytochromes CctA (also known as STC) and ScyA. We show that RyhB destabilizes the mRNA of four of its target genes, cctA, scyA, omp35, and nrfA and this requires the presence of the RNA chaperone Hfq. Iron limitation decreases the expression of the RyhB target genes cctA and scyA and this regulation relies on the presence of both Fur and RyhB. Overall, this study suggests that controlling cytochrome expression is of importance to maintain iron homeostasis and that sRNAs molecules are important players in the regulation of fundamental processes in S. oneidensis MR-1.
Project description:Transcriptomic analysis used to understand the influence of elevated intracellular cyclic-di-GMP in Shewanella oneidensis on expression of c-type cytochrome at transcript level.
Project description:The sumitted data compares gene expression profile of Shewnaella oneidensis MR-1 on two different sets of media conditions (nutritionally rich LB medium and Lactate minimal medium) To explore the effect of various growth phases in Shewanella oneidensis MR-1, the genome-wide transcriptome profiles growth in two sets media was compared to each other. Strain was grown in chemostat at 20% O2 in batch culture. Samples were collected in duplicate from both experiments.
Project description:Comparison of gene expression and mutant fitness in Shewanella oneidensis MR-1 Expression data for 15 growth conditions in mid-exponential phase and expression data across growth phases for 3 of those conditions
Project description:We combined high-resolution tiling microarrays and 5'-end RNA sequencing to obtain a genome-wide map of transcription start sites (TSSs) for Shewanella oneidensis MR-1. To test the reliability of these TSSs, we compared our result to those from differential RNA sequencing (dRNA-seq), which discriminates primary and processed ends of transcripts. We found that our identified TSSs tend to have significantly more mapped reads in the TEX(+) sample than the TEX(-) sample. Overall, the dRNA-seq results support the validity of our predictions for TSS.