Aligning single-cell developmental and reprogramming trajectories identifies molecular determinants of reprogramming outcome
Ontology highlight
ABSTRACT: Cellular reprogramming through manipulation of defined factors holds great promise for large-scale production of cell types needed for use in therapy, as well as for expanding our understanding of the general principles of gene regulation. MYOD-mediated myogenic reprogramming, which converts many cell types into contractile myotubes, remains one of the best characterized model system for direct conversion by defined factors. However, why MYOD can efficiently convert some cell types into myotubes but not others remains poorly understood. Here, we analyze MYOD-mediated reprogramming of human fibroblasts at pseudotemporal resolution using single-cell RNA-Seq. Successfully reprogrammed cells navigate a trajectory with two branches that correspond to two barriers to reprogramming, with cells that select incorrect branches terminating at aberrant or incomplete reprogramming outcomes. Differential analysis of the major branch points alongside alignment of the successful reprogramming path to a primary myoblast trajectory revealed Insulin and BMP signaling as crucial molecular determinants of an individual cell’s reprogramming outcome, that when appropriately modulated, increased efficiency more than five-fold. Our single-cell analysis reveals that MYOD is sufficient to reprogram cells only when the extracellular milieu is favorable, supporting MYOD with upstream signaling pathways that drive normal myogenesis in development.
Project description:The generation of myotubes from fibroblasts upon forced MyoD expression is a classic example of factor-induced reprogramming in mammals. We recently discovered that additional modulation of signaling pathways with small molecules facilitates reprogramming to more primitive induced muscle progenitor cells (iMPCs). However, the mechanisms by which a single transcription factor drives differentiated cells into distinct developmental states remain unknown. We therefore dissected the transcriptional and epigenetic dynamics of fibroblasts undergoing MyoD-dependent reprogramming to either myotubes or iMPCs using a novel MyoD transgenic model. To this end, we performed ATAC sequencing for Pax7-nGFP positive iMPCs/satellite cells, cells undergoing dedifferentiation (i.e. Dox+FRG) or transdifferentiation (i.e. Dox) and cells overexpressing a wild type MyoD or a mutant MyoD (i.e. MN) in the presence of FRG. Our analyses elucidate the role of MyoD in myogenic reprogramming and derive general principles by which transcription factors and signaling pathways cooperate to rewire cell identity. Our results may also inform on potential therapeutic applications of direct reprogramming.
Project description:The generation of myotubes from fibroblasts upon forced MyoD expression is a classic example of factor-induced reprogramming in mammals. We recently discovered that additional modulation of signaling pathways with small molecules facilitates reprogramming to more primitive induced muscle progenitor cells (iMPCs). However, the mechanisms by which a single transcription factor drives differentiated cells into distinct developmental states remain unknown. We therefore dissected the transcriptional and epigenetic dynamics of fibroblasts undergoing MyoD-dependent reprogramming to either myotubes or iMPCs using a novel MyoD transgenic model. To this end, we performed single cell RNA sequencing for Pax7-nGFP positive iMPCs/satellite cells and cells undergoing dedifferentiation (i.e. Dox+FRG) or transdifferentiation (i.e. Dox) Our analyses elucidate the role of MyoD in myogenic reprogramming and derive general principles by which transcription factors and signaling pathways cooperate to rewire cell identity. Our results may also inform on potential therapeutic applications of direct reprogramming.
Project description:The generation of myotubes from fibroblasts upon forced MyoD expression is a classic example of factor-induced reprogramming in mammals. We recently discovered that additional modulation of signaling pathways with small molecules facilitates reprogramming to more primitive induced muscle progenitor cells (iMPCs). However, the mechanisms by which a single transcription factor drives differentiated cells into distinct developmental states remain unknown. We therefore dissected the transcriptional and epigenetic dynamics of fibroblasts undergoing MyoD-dependent reprogramming to either myotubes or iMPCs using a novel MyoD transgenic model. To this end, we performed RNA-sequencing for Pax7-nGFP positive (including high and low) iMPCs/satellite cells, cells undergoing dedifferentiation (i.e. Dox+FRG) or transdifferentiation (i.e. Dox) and cells overexpressing a wild type MyoD or a mutant MyoD (i.e. MN) in the presence of FRG. Our analyses elucidate the role of MyoD in myogenic reprogramming and derive general principles by which transcription factors and signaling pathways cooperate to rewire cell identity. Our results may also inform on potential therapeutic applications of direct reprogramming.
Project description:Synthetic transcription factors can be applied to many areas of biotechnology, medicine, and basic research. Currently, the most common method for engineering synthetic transcription factors has been based on programmable DNA-binding domains of zinc finger proteins, Transcription Activator-Like Effectors (TALEs), and most recently the CRISPR/Cas9 system. These transcription factor platforms consist of the DNA-binding domain fused to potent transcriptional activation domains, most commonly the tetramer of the minimal transactivation domain of the VP16 protein from herpes simplex virus, referred to as VP64. Although many applications are well-suited for the targeted activation of a single gene, genetic reprogramming requires the coordinated regulation of many nodes of natural gene networks as is typically performed by naturally occurring reprogramming factors. Thus we sought to combine principles from each of these approaches by attaching potent transcriptional activation domains to a natural reprogramming factor to increase the efficiency and/or rate of cell fate conversion. In this study, we evaluated the effects of fusing potent activation domains to the transcription factor MyoD, the master regulator of the skeletal myoblast lineage. In certain non-myogenic lineages, MyoD overexpression causes upregulation of the myogenic gene network and conversion to a myoblast phenotype including cell fusion into multinucleated myotubes. Compared to wild-type MyoD, the VP64-MyoD fusion protein induced greater overall reprogramming of global gene expression. This simple approach for increasing the potency of natural reprogramming factors circumvents the need for screening engineered proteins and leads to a more robust cellular reprogramming compared to treatment with the wild type transcription factor. Human dermal fibroblasts were transduced with a single tet inducible lentivirus that expresses either WT-MyoD or VP64-MyoD in response to treatment with doxycycline. Untreated human dermal fibroblast served as the negative control. Gene expression was measured using mRNA-seq, and differential expression was calculated using DESeq. All experiments were performed in biological duplicates.
Project description:The discreteness of cell fates is an inherent and fundamental feature of multicellular organisms. Here we show that cross-antagonistic mechanisms of actions of MyoD and PPARg, which are the master regulators of muscle and adipose differentiation, respectively, confer the robustness to the integrity of cell differentiation. Simultaneous expression of MyoD and PPARg in mesenchymal stem/stromal cells led to the generation of a mixture of multinucleated myotubes and lipid-filled adipocytes. Interestingly, hybrid cells, i.e., lipid-filled myotubes, were not generated, suggesting that these differentiation programs are mutually exclusive. Mechanistically, while exogenously expressed MyoD was rapidly degraded in adipocytes through ubiquitin-proteasome pathways, exogenously expressed PPARg was not down-regulated in myotubes. In PPARg-expressing myotubes, PPARg-dependent histone hyperacetylation was inhibited in a subset of adipogenic gene loci, including that of C/EBPa, an essential effector of PPARg. Thus, the cross-repressive interactions between MyoD- and PPARg-induced differentiation programs ensure the discrete cell fate decisions. To gain insights into the mechanisms by which adipogenic differentiation is inhibited in PPARg-expressing myotubes, we performed microarray analysis to compare gene expression profiles of the myotube-enriched (M) fraction and the adipocyte-enriched (A) fraction. M fraction and A fraction were obtained by fractionating a mixture of myotubes and adipocytes, which was generated by simultaneous expression of MyoD and PPARg, according to cell size.
Project description:The discreteness of cell fates is an inherent and fundamental feature of multicellular organisms. Here we show that cross-antagonistic mechanisms of actions of MyoD and PPARg, which are the master regulators of muscle and adipose differentiation, respectively, confer the robustness to the integrity of cell differentiation. Simultaneous expression of MyoD and PPARg in mesenchymal stem/stromal cells led to the generation of a mixture of multinucleated myotubes and lipid-filled adipocytes. Interestingly, hybrid cells, i.e., lipid-filled myotubes, were not generated, suggesting that these differentiation programs are mutually exclusive. Mechanistically, while exogenously expressed MyoD was rapidly degraded in adipocytes through ubiquitin-proteasome pathways, exogenously expressed PPARg was not down-regulated in myotubes. In PPARg-expressing myotubes, PPARg-dependent histone hyperacetylation was inhibited in a subset of adipogenic gene loci, including that of C/EBPa, an essential effector of PPARg. Thus, the cross-repressive interactions between MyoD- and PPARg-induced differentiation programs ensure the discrete cell fate decisions. To gain insights into the mechanisms by which adipogenic differentiation is inhibited in PPARg-expressing myotubes, we performed microarray analysis to compare gene expression profiles of the myotube-enriched (M) fraction and the adipocyte-enriched (A) fraction. M fraction and A fraction were obtained by fractionating a mixture of myotubes and adipocytes, which was generated by simultaneous expression of MyoD and PPARg, according to cell size. Microarray analysis was performed using mRNA isolated from C3H10T1/2 cells. We used five samples: non-infected cells, control lentivirus-infected cells, HA-PPARg-infected cells, and cells co-infected with Myc-MyoD and HA-PPARg and then fractionated accroding to cell size (M-fraction and A-fraction). Total RNA was prepared using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s instruction. Other procedures including hybridization to the Mouse Gene 1.0 ST array (Affymetrix) were performed according to Affymetrix protocols. The affymetrix outputs (CEL files) were imported into GeneSpring GX 11.0.2 (Agilent Technologies) microarray analysis software for presentation of the expression profiles. Probe intensities were normalized, and expression signals of all genes (probe sets) were calculated using RMA (robust multi-array analysis, as implemented in GeneSpring GX).
Project description:Ectopic expression of defined transcription factors can force direct cell fate conversion from one lineage to another in the absence of cell division. Several transcription factor cocktails have enabled successful reprogramming of various somatic cell types into induced neurons (iNs) of distinct neurotransmitter phenotype. However, the nature of the intermediate states that drive the reprogramming trajectory towards distinct iN types is largely unknown. Here we show that successful direct reprogramming of adult human brain pericytes into functional iNs by Ascl1 and Sox2 (AS) encompasses transient activation of a neural stem cell-like gene expression program that precedes bifurcation into distinct neuronal lineages. Intriguingly, during this transient state key signaling components relevant for neural induction and neural stem cell maintenance are regulated and functionally contribute to iN reprogramming and maturation. Thus, AS-mediated reprogramming into a broad spectrum of iN types involves the unfolding of a developmental program via neural stem cell-like intermediates.
Project description:Synthetic transcription factors can be applied to many areas of biotechnology, medicine, and basic research. Currently, the most common method for engineering synthetic transcription factors has been based on programmable DNA-binding domains of zinc finger proteins, Transcription Activator-Like Effectors (TALEs), and most recently the CRISPR/Cas9 system. These transcription factor platforms consist of the DNA-binding domain fused to potent transcriptional activation domains, most commonly the tetramer of the minimal transactivation domain of the VP16 protein from herpes simplex virus, referred to as VP64. Although many applications are well-suited for the targeted activation of a single gene, genetic reprogramming requires the coordinated regulation of many nodes of natural gene networks as is typically performed by naturally occurring reprogramming factors. Thus we sought to combine principles from each of these approaches by attaching potent transcriptional activation domains to a natural reprogramming factor to increase the efficiency and/or rate of cell fate conversion. In this study, we evaluated the effects of fusing potent activation domains to the transcription factor MyoD, the master regulator of the skeletal myoblast lineage. In certain non-myogenic lineages, MyoD overexpression causes upregulation of the myogenic gene network and conversion to a myoblast phenotype including cell fusion into multinucleated myotubes. Compared to wild-type MyoD, the VP64-MyoD fusion protein induced greater overall reprogramming of global gene expression. This simple approach for increasing the potency of natural reprogramming factors circumvents the need for screening engineered proteins and leads to a more robust cellular reprogramming compared to treatment with the wild type transcription factor.
Project description:Adipose-derived cells (ADCs) from white adipose tissue (WAT) are promising stem cell candidates due to large innate regenerative reserves and achievement of clinically meaningful cardiac regeneration. However, due to the heterogeneity of ADCs and unsolved molecular mechanism underpins of cardiac acquisition, the ADC-Cardiac transition efficiency remains low. Here, we found a population of ADCs reacted to leukemia inhibitory factor (LIF) and differentiated into functional beating cardiomyocyte-like cells. With single cells sequencing, we profiled 39,432 single cell transcriptomes at multiple time points throught the cardiac transition course. Combined with FACS, we identified three distinct pdgfra+ ADC populations that responded differently to the LIF signaling and transited to cardiomyocyte like cells. Dynamic trajectories derived from pseudotime analysis on ADCs navigate a trajectory with two branches that correspond to two alternative fate decisions. Analysis of starting branch revealed Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling is the crucial event in initiation of myogenic program. The ending two branches represented activated myofibroblast and cardiomyocyte like cells. Collectively, our findings offer a high-resolution dissection of ADC heterogeneity and cell fate dynamics during ADCs-Cardiac transition, thus shed new insights into potential cardiac stem cells for future usage.
Project description:Direct lineage conversion offers a new strategy for tissue regeneration and disease modeling. Despite recent success in directly reprogramming fibroblasts into a wide spectrum of cell types, the precise changes that fibroblasts undergo as they progress to target cell fates remain unclear. The inherent heterogeneity and asynchronous nature of the reprogramming process make it difficult to study using bulk genomic techniques. Therefore, a fundamental and detailed understanding of global transcriptome changes at the single cell level is necessary to better optimize reprogramming for therapeutic purposes and to advance the understanding of cell plasticity and cell identity acquisition. Here, we applied single-cell RNA-seq to analyze global transcriptome changes at early stages of induced cardiomyocyte (iCM) reprogramming. Using unsupervised dimensionality reduction and clustering algorithms, we identified molecularly distinct subpopulations of cells along the reprogramming process from fibroblasts to iCMs, including a novel intermediate state that exhibited molecular signatures of both fibroblast and cardiomyocyte. In summary, our single cell transcriptomics approaches enabled us to construct a reprogramming trajectory and uncover the intermediate cell populations, regulatory pathways and genes putatively involved in iCM induction.