Analysis of Transcript Abundance in white, intermediate, and opaque cell states from WT and EFG1 heterozygotes in Candida albicans
Ontology highlight
ABSTRACT: The ability to undergo heritable switching between cell states is well recognized in microbial species. In the human fungal pathogen Candida albicans, cells can stably exist in several alternative states that show differential interactions with the mammalian host. Here, we demonstrate that gene dosage of the master transcription factor, Efg1, controls access to distinct cell states in diploid C. albicans cells. Thus, cells that are hemizygous for EFG1 can stably differentiate into a cell state that is not available to cells with two functional copies of the EFG1 gene. Strikingly, we reveal that a number of clinical isolates of C. albicans encode polymorphisms that produce a hemizygous EFG1 genotype and that this enables access to the novel cell state. Furthermore, we show that C. albicans cells in different cell states each exhibit unique interactions with the mammalian host, with consequences for both commensalism and pathogenesis.
ORGANISM(S): Candida albicans
PROVIDER: GSE105399 | GEO | 2019/01/31
REPOSITORIES: GEO
ACCESS DATA