A genome-wide housekeeping role for TFIID and a highly stress-related role for SAGA in Saccharomyces cerevisiae
Ontology highlight
ABSTRACT: TFIID and SAGA are the only two known yeast complexes that modify chromatin and deliver TBP to promoters. Previous genome wide expression studies indicated that TFIID and SAGA positively regulate most but not all yeast genes. Using a relatively low noise microarray approach, we have re-examined the genome-wide dependence on TFIID and SAGA. We find that TFIID and SAGA contribute to the expression of virtually the entire genome, with TFIID being preferred at ~90% of the genes, and SAGA being preferred at ~10%. SAGA-dominated genes were found to overlap substantially with a previously described set of highly active genes that are attenuated in part by the TBP regulator NC2, and an auto-inhibitory function of TFIID. These SAGA-dominated genes also encompass most of the previously reported “TAF-independent” genes. These results build upon and refine the generally held view that activators recruit either TFIID or SAGA to promoters which then bind and acetylate nucleosomes locally, thereby enhancing TBP delivery to the TATA box. Promoter-specific differences in the ability to alleviate auto-inhibitory activities associated with TFIID and SAGA might contribute to the preferential use one complex versus the other. Keywords = Chromatin Immunoprecipitation Keywords = genome-wide binding Keywords: other
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE1061 | GEO | 2004/03/01
SECONDARY ACCESSION(S): PRJNA87143
REPOSITORIES: GEO
ACCESS DATA