Transcriptomics

Dataset Information

0

Polyol pathway links glucose metabolism to the aggressiveness of cancer cells


ABSTRACT: Cancer cells alter their metabolism to support their malignant properties. By transcriptomic analysis we identified the glucose-transforming polyol pathway (PP) gene aldo-keto-reductase-1-member-B1 (AKR1B1) as strongly correlated with epithelial-to-mesenchymal transition (EMT). This association was confirmed staining samples from lung cancer patients and from an EMT-driven colon cancer mouse model with p53 deletion. In vitro, mesenchymal-like cancer cells showed increased AKR1B1 levels and AKR1B1 knockdown was sufficient to revert EMT. An equivalent level of EMT suppression was measured by targeting the downstream enzyme sorbitol-dehydrogenase (SORD), further pointing at the involvement of the PP. Comparative RNA sequencing profiling confirmed a profound alteration of EMT in PP-deficient cells, revealing a strong repression of TGF-Beta signature genes. Mechanistically, excess glucose was found to promote EMT through autocrine TGF-Beta stimulation, while PP-deficient cells were refractory to glucose-induced EMT. PP represents a molecular link between glucose metabolism and cancer differentiation and aggressiveness, and a novel potential therapeutic target.

ORGANISM(S): Homo sapiens

PROVIDER: GSE106169 | GEO | 2018/05/01

REPOSITORIES: GEO

Similar Datasets

2023-09-19 | PXD045048 | Pride
2022-05-16 | GSE195759 | GEO
2023-07-31 | PXD037401 | Pride
2017-11-07 | MTBLS387 | MetaboLights
2020-06-30 | MODEL2004040001 | BioModels
2013-02-01 | E-GEOD-41245 | biostudies-arrayexpress
2010-09-03 | E-GEOD-23952 | biostudies-arrayexpress
2023-07-14 | PXD043376 | Pride
2023-10-04 | GSE217881 | GEO
2017-07-25 | GSE101809 | GEO