Exploring the sound-modulated delay in tomato ripening through expression analysis of RNA.
Ontology highlight
ABSTRACT: We evaluated the molecular mechanism underlying this delaying fruit ripening by performing RNA-sequencing analysis of tomato fruits at 6 h, 2 days (d), 5 d and 7 d after 1 kHz sound vibration treatment. Differentially expressed genes revealed that some of these genes are involved in plant hormone and cell wall modification processes. Ethylene and cytokinin biosynthesis and signalling genes were downregulated by sound vibration treatment, whereas genes involved in flavonoid, phenylpropanoid and glucan biosynthesis were upregulated. Our results indicate that sound vibration helps delay fruit ripening through the sophisticated regulation of RNAs and transcription factor genes.
Project description:Plant can perceive and respond natural sound vibration (SV). Artificial SV also served as a novel trigger of induced resistance, although approaches for activating such plant innate immunity intensively studied on the use of biological and chemical agents (BCA). Artificial SV pre-treatment protected Arabidopsis thaliana seedlings against insect pests and fungal pathogens. However, SV-mediated epigenetic modulation remains unexplored while CBA-mediated induced resistance is known as a complicated process involving epigenetic regulation. Here, we performed a ChIP-seq analysis to understand the role of 10 kHz SV-mediated epigenetic modification in induced resistance against a soil-borne pathogenic bacterium Ralstonia solanacearum.
Project description:Plant can perceive and respond natural sound vibration (SV). Artificial SV also served as a novel trigger of induced resistance, although approaches for activating such plant innate immunity intensively studied on the use of biological and chemical agents (BCA). Artificial SV pre-treatment protected Arabidopsis thaliana seedlings against insect pests and fungal pathogens. However, SV-mediated epigenetic modulation remains unexplored while CBA-mediated induced resistance is known as a complicated process involving epigenetic regulation. Here, we performed an expression profiling basd on small RNA-seq experiment to understand the role of 10 kHz SV-mediated epigenetic modification in induced resistance against a soil-borne pathogenic bacterium Ralstonia solanacearum.
Project description:Plant can perceive and respond natural sound vibration (SV). Artificial SV also served as a novel trigger of induced resistance, although approaches for activating such plant innate immunity intensively studied on the use of biological and chemical agents (BCA). Artificial SV pre-treatment protected Arabidopsis thaliana seedlings against insect pests and fungal pathogens. However, SV-mediated epigenetic modulation remains unexplored while CBA-mediated induced resistance is known as a complicated process involving epigenetic regulation. Here, we performed a gene expression profiling basd on RNA-seq experiment to understand the role of 10 kHz SV-mediated epigenetic modification in induced resistance against a soil-borne pathogenic bacterium Ralstonia solanacearum.
Project description:As mechanical stimuli, sound vibrations are known to influence various molecular and physiological processes that can ultimately improve crop performance and yield. Microarray analyses were carried out to investigate the global gene expression changes in MicroTom plants subjected to 1000 Hz sound vibration prior to infection with Pst DC300 to test the effectiveness of sound as a priming agent. Data revealed that 1000 Hz pretreatment is effective in eliciting a transcriptional reprogramming in tomato plants grown under normal conditions, but particularly after Pst DC3000 infection. The protective effect of 1000 Hz pretreatment against Pst DC3000 appeared to be mediated by the upregulation of both unique differentially expressed genes (DEGs) involved in cell wall reinforcement, phenylpropanoid pathway and defensive proteins as well as common DEGs associated with boosting plant basal immunity.
Project description:Sound vibration (SV), a mechanical stimulus, can trigger various molecular and physiological changes in plants. Herein, we investigated the effect of SV pre-treatment on Arabidopsis immunity to measure the priming potential of SV. Arabidopsis plants (fourteen-day-old) were treated with sound vibration (1000 Hz, 100 dB) for daily 3 hours up to 10 days in a soundproof chamber. The control plants were kept in a similar sound-proof chamber without SV exposure (daily 3 h) up to 10 days. After that, control and SV-treated plants were challenged with Botrytis cinerea spores. The result showed that SV pre-treatment increases the disease resistance of Arabidopsis against B. cinerea. Samples from three different time points were analyzed through microarray: (1) right after the 10th day of 3h SV treatment (0 h time point), and (2) after Botrytis spore inoculation (12 and 24 hpi time points). RNA was isolated from rosette leaves.
Project description:Sound vibration (SV) causes various developmental and physiological changes in plants. It strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signaling in plants. However, the underlying molecular mechanism of SV-mediated plant responses remains elusive. Herein, we investigated the transcript changes in Arabidopsis thaliana upon five different single frequencies of SV treatment.
Project description:In contrast to climacteric fruits such as tomato, the knowledge on key regulatory genes controlling the ripening of strawberry, a non-climacteric fruit, is still limited. NAC transcription factors mediate different developmental processes in plants. Here, we identified and characterized FaRIF (Ripening Inducing Factor), a NAC transcription factor that is highly expressed and induced in strawberry receptacles during ripening. Functional analyses based on stable transgenic lines aimed at silencing FaRIF by RNA interference, either from a constitutive promoter or the ripe receptacle-specific EXP2 promoter, as well as overexpression lines showed that FaRIF controls critical ripening-related processes such as fruit softening and pigment and sugar accumulation. Physiological, metabolome and transcriptome analyses of receptacles of FaRIF-silenced and overexpression lines point to FaRIF as a key regulator of strawberry fruit ripening from early developmental stages, controlling abscisic acid (ABA) biosynthesis and signaling, cell wall degradation and modification, the phenylpropanoid pathway, volatiles production, and the balance of the aerobic/anaerobic metabolism. FaRIF is therefore a target to be modified/edited to control the quality of strawberry fruits.
Project description:The role played by transcription factors in the regulation of strawberry fruit ripening process is scant. We have identified and functionally characterized FaDOF2, a DOF-type transcription factor. FaDOF2 is a ripening-related transcription factor that regulates key genes involved in eugenol biosynthesis in strawberry fruit receptacles.
Project description:Here, we found that the tomato jmjC domain-containing gene SlJMJ6 encodes a histone lysine demethylase that specifically demethylates H3K27 methylation. Overexpression of SlJMJ6 accelerated fruit ripening in tomato, which is associated with the up-regulated expression of a large number of ripening-related genes. Integrated analysis of RNA-seq and ChIP-seq data identified 55 genes that are targeted directly by SlJMJ6 and transcriptionally up-regulated with decreased H3K27m3 in SlJMJ6 overexpressing (SlJMJ6-OE) fruits. A large number of the SlJMJ6-regulated genes are involved in transcription regulation, ethylene biosynthesis, cell wall degradation, pigment biosynthesis, and hormone signaling. Fourteen ripening-related genes including RIN, ACS4, ACO1, PL, TBG4 were confirmed to be directly regulated by SlJMJ6 through removing H3K27me3. Taken together, these results indicated that SlJMJ6 is a ripening prompting H3K27me3 demethylase that activates the expression of the ripening-related genes by modulating H3K27me3, thereby facilitating fruit ripening in tomato. To our knowledge, this is the first report of the involvement of a histone lysine demethylase in the regulation of fruit ripening.