Transcriptome analysis of C. elegans embryos lacking ADARs and the 26G pathway
Ontology highlight
ABSTRACT: Adenosine deaminases that act on RNA (ADARs) catalyze the conversion of adenosine to inosine in dsRNA. C. elegans ADARs, ADR-1 and ADR-2, promote the expression of genes containing dsRNA structures by preventing their processing into siRNAs and silencing by RNAi. The 26G endogenous siRNA (endo-siRNA) pathway generates a subset of siRNAs distinct from those made in adr-1;adr-2 mutants, but using many of the same factors. We found that adr-1;adr-2;rrf-3 mutants, lacking both ADARs and the RNA-dependent RNA polymerase RRF-3 required for the 26G pathway, display a bursting phenotype rescued by the RNAi factors RDE-1 and RDE-4. To determine what gene expression changes underlie the synthetic phenotype of adr-1;adr-2;rrf-3 mutants, we sequenced poly(A)+ RNA from adr-1;adr-2;rrf-3 embryos, their parent strains, and strains rescued with mutations in rde-1 and rde-4. We found that genes associated with edited structures were robustly downregulated in adr-1;adr-2;rrf-3 mutants in a manner partially dependent on rde-1 and rde-4. Additionally, genes induced during Orsay virus infections were induced in rrf-3 mutants and further upregulated in adr-1;adr-2;rrf-3 mutants, again dependent in part on rde-1 and rde-4.
ORGANISM(S): Caenorhabditis elegans
PROVIDER: GSE106647 | GEO | 2018/02/23
REPOSITORIES: GEO
ACCESS DATA