Differential Expression Data from Lipopolysaccharide (LPS) Injected Mice
Ontology highlight
ABSTRACT: Uncontrolled microglial activation may lead to development of inflammation-induced brain damage. Here we uncover a ribosome-based mechanism/check point involved in control of the innate immune response and microglial activation. Using an in vivo model-system for analysis of the dynamic translational state of microglial ribosomes with mRNAs as input and newly synthesized peptides as an output, we find a marked dissociation of microglia mRNA and protein networks following innate immune challenge. Highly up-regulated and ribosome-associated mRNAs were not translated resulting in two distinct microglial molecular signatures, a highly specialized pro-inflammatory mRNA and immunomodulatory/homeostatic protein signature. We find that this is due to specific translational suppression of highly expressed mRNAs through a 3’UTR-mediated mechanism involving the RNA binding protein SRSF3. This discovery suggests avenues for therapeutic modulation of innate immune response in resident microglia.
ORGANISM(S): Mus musculus
PROVIDER: GSE107034 | GEO | 2017/12/13
SECONDARY ACCESSION(S): PRJNA418856
REPOSITORIES: GEO
ACCESS DATA