Project description:Memory CD8 T cells that circulate in the blood and are present in lymphoid organs are an essential component of long-lived T cell immunity. These memory CD8 T cells remain poised to rapidly elaborate effector functions upon re-exposure to pathogens, but also have many properties in common with naive cells, including pluripotency and the ability to migrate to the lymph nodes and spleen. Thus, memory cells embody features of both naive and effector cells, fuelling a long-standing debate centred on whether memory T cells develop from effector cells or directly from naive cells. Here we show that long-lived memory CD8 T cells are derived from a subset of effector T cells through a process of dedifferentiation. To assess the developmental origin of memory CD8 T cells, we investigated changes in DNA methylation programming at naive and effector cell-associated genes in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection in mice. Methylation profiling of terminal effector versus memory-precursor CD8 T cell subsets showed that, rather than retaining a naive epigenetic state, the subset of cells that gives rise to memory cells acquired de novo DNA methylation programs at naive-associated genes and became demethylated at the loci of classically defined effector molecules. Conditional deletion of the de novo methyltransferase Dnmt3a at an early stage of effector differentiation resulted in reduced methylation and faster re-expression of naive-associated genes, thereby accelerating the development of memory cells. Longitudinal phenotypic and epigenetic characterization of the memory-precursor effector subset of virus-specific CD8 T cells transferred into antigen-free mice revealed that differentiation to memory cells was coupled to erasure of de novo methylation programs and re-expression of naive-associated genes. Thus, epigenetic repression of naive-associated genes in effector CD8 T cells can be reversed in cells that develop into long-lived memory CD8 T cells while key effector genes remain demethylated, demonstrating that memory T cells arise from a subset of fate-permissive effector T cells.
Project description:Memory CD8+ T cells are indispensable for maintaining long-term immunity against intracellular pathogens and tumors. Despite their presence in oxygen-deprived tissues of infection sites or tumors, the impact of local oxygen pressure on memory CD8+ T cells has remained largely unclear. We sought to elucidate how oxygen pressure impacted memory CD8+ T cells arising after infection with Listeria monocytogenes-OVA. Our data revealed that reduced oxygen pressure during in vitro culture switched CD8+ T cell metabolism from an OXPHOS to a glycolytic phenotype. Quantitative proteomic analysis showed that limiting oxygen conditions increased the expression of glucose transporters and components of the glycolytic pathway, while decreasing TCA cycle and mitochondrial respiratory chain proteins. The altered CD8+ T cell metabolism did not affect the expansion potential, but enhanced the granzyme B and IFN- production capacity. Memory CD8+ T cells cultured under low oxygen pressure were able to persist long-term in vivo and provided protection against bacterial rechallenge. Taken together, our study indicates that strategies of cellular immune therapy may benefit from reducing oxygen during culture to develop memory CD8+ T cells with superior effector functions .
Project description:CD8 effector T cells with a CD127hi KLRG1- phenotype are considered precursors to the long-lived memory pool, while KLRG1+ CD127low cells are viewed as short-lived effectors. Nevertheless, we and others have shown that a KLRG1+ CD127low population persists into the memory phase and that these T cells (termed long-lived effector cells or LLEC) display robust protective function during acute re-challenge with bacteria or viruses. Whether these T cells represent a true memory population or are instead a remnant effector cell population that failed to undergo initial contraction has remained unclear. Here, we show that LLEC from mice express a distinct phenotypic and transcriptional signature that shares characteristics of both early effectors and long-lived memory cells. Furthermore, we find that LLEC are exclusively derived from day 12 KLRG1+ effector cells. Our work challenges the concept that the KLRG1+ CD127low population is dominated by short-lived cells and shows that KLRG1 downregulation is not a prerequisite to become a long-lived protective memory T cell.
Project description:Memory T cells are heterogeneous in terms of their phenotype and functional properties. We investigated the molecular profiles of human CD8 naïve (TN), central memory (TCM), effector memory (TEM), and effector memory RA (TEMRA) T cells using gene expression microarrays and phospho-protein-specific intracellular flow cytometry. We demonstrate that TCM have a gene expression and cytokine signaling signature that lies between that of TN and TEM or TEMRA cells, whereas TEM and TEMRA are closely related. Our data define the molecular basis for the different functional properties of central and effector memory subsets. We show that TEM and TEMRA cells strongly express genes with known importance in CD8 T cell effector function. In contrast, TCM are characterized by high basal and cytokine-induced STAT5 phosphorylation, reflecting their capacity for self-renewal. Altogether, our results distinguish TCM and TEM/TEMRA at the molecular level and are consistent with the concept that TCM represent memory stem cells.
Project description:Differentiation of CD8+ T lymphocytes into effector and memory cells is key for an adequate immune response and relies on complex interplay of pathways that convey signals from cell surface to nucleus. In this study, we fractionated four CD8+ T cell subtypes; naïve, recently activated effector, effector and memory cells into membrane, cytosol, soluble nucleus, chromatin-bound and cytoskeleton compartments. Using LC-MS/MS analysis, identified peptides were matched to human peptides/proteins (SwissProt). Compartment fractionation and gel-LC-MS separation identified 2399 proteins in total. Among these 735 were detected in all five, 241 in four, 257 in three, 368 in two and 798 found in only one fraction. Comparison between the two most different subsets, naïve and effector, yielded 146 significantly regulated proteins.
Project description:During a T cell response, naïve CD8 T cells differentiate into effector cells. Subsequently, a subset of effector cells termed memory precursor effector cells (MPECs) further differentiates into functionally mature memory CD8 T cells. The transcriptional network underlying this carefully scripted process is not well understood. Here, we report that the transcription factor FoxO1 plays an integral role in facilitating effector to memory transition and functional maturation of memory CD4 and CD8 T cells. We find that FoxO1 is not required for differentiation of effector cells, but in the absence of FoxO1, memory CD8 T cells displayed features of scenescence and progressive attrition in polyfunctionality, which in turn led to impared recall responses and poor protective immunity. These data suggest that FoxO1 is essential for active maintenance of functional CD8 T cell memory and protective immunity. Under competing conditions in bone marrow Single-cell suspensions from splenocytes of eight samples WT (control) and FoxO1-/- (experimental) LCMV-immune mice were prepared using standard procedures. CD8 T cells were then isoloated using Thy1.2 (CD90.2) (30-H12) microbeads (Miltenyi Biotec). Cells were then stained with anti-CD8, anti-CD44 and Db/NP396 MHC class I tetramer. Activated (CD8+CD44hi), naive (CD8+CD44lo), and virus-specific CD8 T cells were sorted using FACSAria II instrument (BD Biosciences). The purity of the cells was >95%. Total RNA was extracted from the sorted cells by Trizol Reagent. RNA samples were reverse transcribed and Cy3-labeled cDNAs were hyrbidized to Agilent whole Mouse Genome Oligo Microarrays. Fluorscence signals were detected using Agilent's Microarray Scanner system, data was analyzed using the Rosetta Resolver gene expression data analysis system and genes with a fold change < and p-values <0.01 were identified. Microarray data discussed in the paper is focused on virus-specific memory CD8 T cells from samples WT_Tet_2 vs KO_Tet_2.
Project description:Expression profiles of in vitro generated CD8+ central memory (CM) and effector/effector memory (E/EM) T cells on Affymetrix GeneChip Murine Genome U74 Version 2 Set MG-U74A, MG-U74B, and MG-U74C. T cells were generated from female P14 T cell receptor transgenic mice on the C57Bl/6 genetic background.
Project description:Differentiation of CD8+ T lymphocytes into effector and memory cells is key for an adequate immune response and relies on complex interplay of pathways that convey signals from cell surface to nucleus. In this study, we fractionated four CD8+ T cell subtypes; naïve, recently activated effector, effector and memory cells into membrane, cytosol, soluble nucleus, chromatin-bound and cytoskeleton compartments. Using LC-MS/MS analysis, identified peptides were matched to human peptides/proteins (SwissProt). Compartment fractionation and gel-LC-MS separation identified 2399 proteins in total. Among these 735 were detected in all five, 241 in four, 257 in three, 368 in two and 798 found in only one fraction. Comparison between the two most different subsets, naïve and effector, yielded 146 significantly regulated proteins.