Identification of miR-305, a microRNA that promotes ageing, and its target mRNAs in Drosophila
Ontology highlight
ABSTRACT: MicroRNAs (miRNAs) are involved in the regulation of important biological processes. Here, we describe a novel Drosophila miRNAs involved in ageing. We selected eight Drosophila miRNAs, displaying high homology with seed sequences of ageing-related miRNAs characterized in other species, and investigated whether the overexpression of these miRNAs affected ageing in Drosophila adult flies. The lifespan of adults overexpressing miR-305, a miRNA showing high homology with miR-239 in C. elegans, was significantly shorter. Conversely, a reduction in miR-305 expression led to a longer lifespan than that in control flies. miR-305 overexpression accelerated the impairment of locomotor activity, and promoted the age-dependent accumulation of poly-ubiquitinated protein aggregates in the muscle, as flies aged. Thus, we demonstrate that the ectopic expression of miR-305 has a deleterious effect on ageing in Drosophila. To identify the targets of miR-305, we performed RNA-Seq. We discovered several mRNAs encoding antimicrobial peptides and insulin-like peptides, whose expression changed in adults upon miR-305 overexpression. We further confirmed, by qRT-PCR, that miR-305 overexpression significantly decreases the mRNA levels of four antimicrobial peptides. As these mRNAs contain multiple sequences matching the seed sequence of miR-305, we speculate that a reduction in target mRNA levels, caused by ectopic miRNA expression, promotes ageing.
Project description:It is well appreciated that reactive oxygen species (ROS) are deleterious to mammals, including humans, especially when generated in abnormally large quantities from cellular metabolism. Whereas the mechanisms leading to the production of ROS are rather well delineated, the mechanisms underlying tissue susceptibility or tolerance to oxidant stress remain elusive. Through an experimental selection over many generations, we have previously generated Drosophila melanogaster flies that tolerate tremendous oxidant stress and have shown that the family of antimicrobial peptides (AMP) is over-represented in these tolerant flies. Furthermore, we have also demonstrated that overexpression of even one AMP at a time (e.g. Diptericin) allows wild type flies to survive much better in hyperoxia. In the current study, we used a number of experimental approaches to investigate the potential mechanisms underlying hyperoxia tolerance in flies with antimicrobial peptide overexpression. We demonstrate that flies with Diptericin overexpression resist oxidative stress by increasing antioxidant enzyme activities and preventing an increase in ROS level after hyperoxia. Depleting the GSH pool using buthionine sulfoximine limits fly survival, thus confirming that enhanced survival observed in these flies is related to improved redox homeostasis. We conclude that a) AMPs play an important role in tolerance to oxidant stress; b) overexpression of Diptericin changes the cellular redox balance between oxidant and antioxidant, and c) this change in redox balance plays an important role in survival in hyperoxia. Expression profiles of Drosophila melanogaster with anti-microbial peptide over-expression (experimental sample; n=3) and controls (UAS-AMP alone not crossed to da-GAL4; n=3) were determined using Affymetrix Drosophila Genome 2.0 Arrays.
Project description:It is well appreciated that reactive oxygen species (ROS) are deleterious to mammals, including humans, especially when generated in abnormally large quantities from cellular metabolism. Whereas the mechanisms leading to the production of ROS are rather well delineated, the mechanisms underlying tissue susceptibility or tolerance to oxidant stress remain elusive. Through an experimental selection over many generations, we have previously generated Drosophila melanogaster flies that tolerate tremendous oxidant stress and have shown that the family of antimicrobial peptides (AMP) is over-represented in these tolerant flies. Furthermore, we have also demonstrated that overexpression of even one AMP at a time (e.g. Diptericin) allows wild type flies to survive much better in hyperoxia. In the current study, we used a number of experimental approaches to investigate the potential mechanisms underlying hyperoxia tolerance in flies with antimicrobial peptide overexpression. We demonstrate that flies with Diptericin overexpression resist oxidative stress by increasing antioxidant enzyme activities and preventing an increase in ROS level after hyperoxia. Depleting the GSH pool using buthionine sulfoximine limits fly survival, thus confirming that enhanced survival observed in these flies is related to improved redox homeostasis. We conclude that a) AMPs play an important role in tolerance to oxidant stress; b) overexpression of Diptericin changes the cellular redox balance between oxidant and antioxidant, and c) this change in redox balance plays an important role in survival in hyperoxia.
Project description:Physical exercise stimulates adult hippocampal neurogenesis in mammals, and is considered a relevant strategy for preventing age-related cognitive decline in aging humans. However, its mechanism is controversial. Here, by investigating microRNAs (miRNAs) and their downstream pathways, we uncover that downregulation of miR-135a-5p mediates exercise-induced proliferation of adult NPCs in adult neurogenesis in the mouse hippocampus, likely by activation of phosphatidylinositol (IP3) signaling. Specifically, while overexpression of miR-135 prevents exercise-induced proliferation in the adult mouse hippocampus in vivo and in NPCs in vitro, its inhibition activates NPCs proliferation in resting and aged mice. Label free proteomics and bioinformatics analysis identifies 11 potential targets of miR-135 in NPCs, several of them involved in phosphatidylinositol signaling. Thus, miR-135a is key in mediating exercise-induced adult neurogenesis and opens intriguing perspectives toward the therapeutic exploitation of miR-135 to delay or prevent pathological brain ageing.Physical exercise stimulates adult hippocampal neurogenesis in mammals, and is considered a relevant strategy for preventing age-related cognitive decline in aging humans. However, its mechanism is controversial. Here, by investigating microRNAs (miRNAs) and their downstream pathways, we uncover that downregulation of miR-135a-5p mediates exercise-induced proliferation of adult NPCs in adult neurogenesis in the mouse hippocampus, likely by activation of phosphatidylinositol (IP3) signaling. Specifically, while overexpression of miR-135 prevents exercise-induced proliferation in the adult mouse hippocampus in vivo and in NPCs in vitro, its inhibition activates NPCs proliferation in resting and aged mice. Label free proteomics and bioinformatics analysis identifies 11 potential targets of miR-135 in NPCs, several of them involved in phosphatidylinositol signaling. Thus, miR-135a is key in mediating exercise-induced adult neurogenesis and opens intriguing perspectives toward the therapeutic exploitation of miR-135 to delay or prevent pathological brain ageing.
Project description:Proctor2017 - Identifying microRNA for muscle regeneration during ageing (Mir1_in_muscle)
This model is described in the article:
Using computer simulation
models to investigate the most promising microRNAs to improve
muscle regeneration during ageing
Carole J. Proctor & Katarzyna
Goljanek-Whysall
Nature Scientific Reports
Abstract:
MicroRNAs (miRNAs) regulate gene expression through
interactions with target sites within mRNAs, leading to
enhanced degradation of the mRNA or inhibition of translation.
Skeletal muscle expresses many different miRNAs with important
roles in adulthood myogenesis (regeneration) and myofibre
hypertrophy and atrophy, processes associated with muscle
ageing. However, the large number of miRNAs and their targets
mean that a complex network of pathways exists, making it
difficult to predict the effect of selected miRNAs on
age-related muscle wasting. Computational modelling has the
potential to aid this process as it is possible to combine
models of individual miRNA:target interactions to form an
integrated network. As yet, no models of these interactions in
muscle exist. We created the first model of miRNA:target
interactions in myogenesis based on experimental evidence of
individual miRNAs which were next validated and used to make
testable predictions. Our model confirms that miRNAs regulate
key interactions during myogenesis and can act by promoting the
switch between quiescent/proliferating/differentiating
myoblasts and by maintaining the differentiation process. We
propose that a threshold level of miR-1 acts in the initial
switch to differentiation, with miR-181 keeping the switch on
and miR-378 maintaining the differentiation and miR-143
inhibiting myogenesis.
This model is hosted on
BioModels Database
and identified by:
MODEL1704110000.
To cite BioModels Database, please use:
Chelliah V et al. BioModels: ten-year
anniversary. Nucl. Acids Res. 2015, 43(Database
issue):D542-8.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Proctor2017 - Identifying microRNA for muscle
regeneration during ageing (Mir181_in_muscle)
This model is described in the article:
Using computer simulation
models to investigate the most promising microRNAs to improve
muscle regeneration during ageing
Carole J. Proctor & Katarzyna
Goljanek-Whysall
Scientific Reports
Abstract:
MicroRNAs (miRNAs) regulate gene expression through
interactions with target sites within mRNAs, leading to
enhanced degradation of the mRNA or inhibition of translation.
Skeletal muscle expresses many different miRNAs with important
roles in adulthood myogenesis (regeneration) and myofibre
hypertrophy and atrophy, processes associated with muscle
ageing. However, the large number of miRNAs and their targets
mean that a complex network of pathways exists, making it
difficult to predict the effect of selected miRNAs on
age-related muscle wasting. Computational modelling has the
potential to aid this process as it is possible to combine
models of individual miRNA:target interactions to form an
integrated network. As yet, no models of these interactions in
muscle exist. We created the first model of miRNA:target
interactions in myogenesis based on experimental evidence of
individual miRNAs which were next validated and used to make
testable predictions. Our model confirms that miRNAs regulate
key interactions during myogenesis and can act by promoting the
switch between quiescent/proliferating/differentiating
myoblasts and by maintaining the differentiation process. We
propose that a threshold level of miR-1 acts in the initial
switch to differentiation, with miR-181 keeping the switch on
and miR-378 maintaining the differentiation and miR-143
inhibiting myogenesis.
This model is hosted on
BioModels Database
and identified by:
MODEL1704110001.
To cite BioModels Database, please use:
Chelliah V et al. BioModels: ten-year
anniversary. Nucl. Acids Res. 2015, 43(Database
issue):D542-8.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Proctor2017 - Identifying microRNA for muscle regeneration during ageing (Mir378_in_muscle)
This model is described in the article:
Using computer simulation
models to investigate the most promising microRNAs to improve
muscle regeneration during ageing
Carole J. Proctor & Katarzyna
Goljanek-Whysall
Scientific Reports
Abstract:
MicroRNAs (miRNAs) regulate gene expression through
interactions with target sites within mRNAs, leading to
enhanced degradation of the mRNA or inhibition of translation.
Skeletal muscle expresses many different miRNAs with important
roles in adulthood myogenesis (regeneration) and myofibre
hypertrophy and atrophy, processes associated with muscle
ageing. However, the large number of miRNAs and their targets
mean that a complex network of pathways exists, making it
difficult to predict the effect of selected miRNAs on
age-related muscle wasting. Computational modelling has the
potential to aid this process as it is possible to combine
models of individual miRNA:target interactions to form an
integrated network. As yet, no models of these interactions in
muscle exist. We created the first model of miRNA:target
interactions in myogenesis based on experimental evidence of
individual miRNAs which were next validated and used to make
testable predictions. Our model confirms that miRNAs regulate
key interactions during myogenesis and can act by promoting the
switch between quiescent/proliferating/differentiating
myoblasts and by maintaining the differentiation process. We
propose that a threshold level of miR-1 acts in the initial
switch to differentiation, with miR-181 keeping the switch on
and miR-378 maintaining the differentiation and miR-143
inhibiting myogenesis.
This model is hosted on
BioModels Database
and identified by:
MODEL1704110002.
To cite BioModels Database, please use:
Chelliah V et al. BioModels: ten-year
anniversary. Nucl. Acids Res. 2015, 43(Database
issue):D542-8.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Proctor2017 - Identifying microRNA for muscle
regeneration during ageing (Mir143_in_muscle)
This model is described in the article:
Using computer simulation
models to investigate the most promising microRNAs to improve
muscle regeneration during ageing
Carole J. Proctor & Katarzyna
Goljanek-Whysall
Scientific Reports
Abstract:
MicroRNAs (miRNAs) regulate gene expression through
interactions with target sites within mRNAs, leading to
enhanced degradation of the mRNA or inhibition of translation.
Skeletal muscle expresses many different miRNAs with important
roles in adulthood myogenesis (regeneration) and myofibre
hypertrophy and atrophy, processes associated with muscle
ageing. However, the large number of miRNAs and their targets
mean that a complex network of pathways exists, making it
difficult to predict the effect of selected miRNAs on
age-related muscle wasting. Computational modelling has the
potential to aid this process as it is possible to combine
models of individual miRNA:target interactions to form an
integrated network. As yet, no models of these interactions in
muscle exist. We created the first model of miRNA:target
interactions in myogenesis based on experimental evidence of
individual miRNAs which were next validated and used to make
testable predictions. Our model confirms that miRNAs regulate
key interactions during myogenesis and can act by promoting the
switch between quiescent/proliferating/differentiating
myoblasts and by maintaining the differentiation process. We
propose that a threshold level of miR-1 acts in the initial
switch to differentiation, with miR-181 keeping the switch on
and miR-378 maintaining the differentiation and miR-143
inhibiting myogenesis.
This model is hosted on
BioModels Database
and identified by:
MODEL1704110003.
To cite BioModels Database, please use:
Chelliah V et al. BioModels: ten-year
anniversary. Nucl. Acids Res. 2015, 43(Database
issue):D542-8.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Proctor2017 - Identifying microRNA for muscle
regeneration during ageing (Mirs_in_muscle)
This model is described in the article:
Using computer simulation
models to investigate the most promising microRNAs to improve
muscle regeneration during ageing
Carole J. Proctor & Katarzyna
Goljanek-Whysall
Nature Scientific Reports
Abstract:
MicroRNAs (miRNAs) regulate gene expression through
interactions with target sites within mRNAs, leading to
enhanced degradation of the mRNA or inhibition of translation.
Skeletal muscle expresses many different miRNAs with important
roles in adulthood myogenesis (regeneration) and myofibre
hypertrophy and atrophy, processes associated with muscle
ageing. However, the large number of miRNAs and their targets
mean that a complex network of pathways exists, making it
difficult to predict the effect of selected miRNAs on
age-related muscle wasting. Computational modelling has the
potential to aid this process as it is possible to combine
models of individual miRNA:target interactions to form an
integrated network. As yet, no models of these interactions in
muscle exist. We created the first model of miRNA:target
interactions in myogenesis based on experimental evidence of
individual miRNAs which were next validated and used to make
testable predictions. Our model confirms that miRNAs regulate
key interactions during myogenesis and can act by promoting the
switch between quiescent/proliferating/differentiating
myoblasts and by maintaining the differentiation process. We
propose that a threshold level of miR-1 acts in the initial
switch to differentiation, with miR-181 keeping the switch on
and miR-378 maintaining the differentiation and miR-143
inhibiting myogenesis.
This model is hosted on
BioModels Database
and identified by:
MODEL1704110004.
To cite BioModels Database, please use:
Chelliah V et al. BioModels: ten-year
anniversary. Nucl. Acids Res. 2015, 43(Database
issue):D542-8.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:MiRNAs have been shown to alter both protein expression and secretion in different cellular contexts. By combining in vitro, in vivo and in silico techniques, we demonstrated that overexpression of pre-miR-1307 reduced the ability of breast cancer cells to induce endothelial cell sprouting and angiogenesis. However, the molecular mechanism behind this and the effect of the individual mature miRNAs derived from pre-miR-1307 on protein secretion and is largely unknown. Here, we overexpressed miR-1307-3p|0, -3p|1 and 5p|0 in MDA-MB-231 breast cancer cells and assessed the impact of miRNA overexpression on protein secretion by Mass Spectrometry. Unsupervised hierarchical clustering revealed a distinct phenotype induced by overexpression of miR-1307-5p|0 compared to the controls and to the 5’isomiRs derived from the 3p-arm. Together, our results suggest different impacts of miR-1307-3p and miR-1307-5p on protein secretion which is in line with our in vitro observation that miR-1307-5p, but not the isomiRs derived from the 3p-arm reduce endothelial cell sprouting in vitro. Hence these data support the hypothesis that miR-1307-5p is at least partly responsible for impaired vasculature in tumors overexpressing pre-miR-1307.