Gene expression profile of human placenta from T. Cruzi infected mothers
Ontology highlight
ABSTRACT: Background. More than one million women in fertile age are infected with Trypanosoma cruzi worldwide. Anti-T.cruzi seropositivity in mothers has been associated with adverse pregnancy outcome but there is still a knowledge gap regarding this effect. Our aim was to compare the gene expression profile of term placental environment from T. cruzi seropositive (SP) and seronegative (SN) mothers. Methods. A RNA-Seq was performed in 9 pools of 2 different placental RNA samples each: 3 belonging to placentas from SN and 6 from SP. Each pool consisted of a binomial of a female/male newborn and a vaginal/caesarean delivery. None of the newborns resulted infected. Results. Only 42 genes showed a significant fold change between SP and SN groups. Among the down-regulated genes were KISS1 and CGB5. In the up-regulated genes group were: KIF12, HLA-G, PRG2, TAC3, FN1 and ATXN3L. To identify pathways significantly associated with maternal T. cruzi-infection, a gene-set association analysis was implemented. The placental environment transcriptomic profile of SP consisted of an enrichment in immunological genes sets (inflammatory response and lymphocytic activation were over-expressed) whereas numerous biosynthetic processes were down-regulated. Conclusions. It is worth noting that several differentially expressed genes in SP placentas code for proteins associated to preeclampsia and miscarriage. This first transcriptomics study in human term placental environment from non-infected deliveries shows a placental response that may affect the faetus while protecting it from the parasite infection; this host response could be responsible for the low rate of congenital transmission observed in human chronic Chagas disease. Background. More than one million women in fertile age are infected with Trypanosoma cruzi worldwide. Anti-T.cruzi seropositivity in mothers has been associated with adverse pregnancy outcome but there is still a knowledge gap regarding this effect. Our aim was to compare the gene expression profile of term placental environment from T. cruzi seropositive (SP) and seronegative (SN) mothers. Methods. A RNA-Seq was performed in 9 pools of 2 different placental RNA samples each: 3 belonging to placentas from SN and 6 from SP. Each pool consisted of a binomial of a female/male newborn and a vaginal/caesarean delivery. None of the newborns resulted infected. Results. Only 42 genes showed a significant fold change between SP and SN groups. Among the down-regulated genes were KISS1 and CGB5. In the up-regulated genes group were: KIF12, HLA-G, PRG2, TAC3, FN1 and ATXN3L. To identify pathways significantly associated with maternal T. cruzi-infection, a gene-set association analysis was implemented. The placental environment transcriptomic profile of SP consisted of an enrichment in immunological genes sets (inflammatory response and lymphocytic activation were over-expressed) whereas numerous biosynthetic processes were down-regulated. Conclusions. It is worth noting that several differentially expressed genes in SP placentas code for proteins associated to preeclampsia and miscarriage. This first transcriptomics study in human term placental environment from non-infected deliveries shows a placental response that may affect the faetus while protecting it from the parasite infection; this host response could be responsible for the low rate of congenital transmission observed in human chronic Chagas disease.
ORGANISM(S): Homo sapiens
PROVIDER: GSE107376 | GEO | 2018/02/20
REPOSITORIES: GEO
ACCESS DATA