Novel Targeting of Transcription and Metabolism in Glioblastoma
Ontology highlight
ABSTRACT: Purpose: Glioblastoma (GBM) is highly resistant to treatment, largely due to disease heterogeneity and resistance mechanisms. We sought to investigate a promising drug that can inhibit multiple aspects of cancer cell survival mechanisms and become effective therapeutics for GBM patients. Experimental Design: To investigate TG02, an agent with known penetration of the Blood-Brain Barrier, we examined the effects as single agent and in combination with temozolomide, a commonly used chemotherapy in GBM. We utilized human GBM cells and a syngeneic mouse orthotopic GBM model, evaluating survival and the pharmacodynamics of TG02. Mechanistic studies included TG02-induced transcriptional regulation, apoptosis and RNA sequencing in treated GBM cells as well as the investigation of mitochondrial and glycolytic function assays. Results: We demonstrated that TG02 inhibited cell proliferation, induced cell death, and synergized with temozolomide in GBM cells with different genetic background but not in astrocytes. TG02-induced cytotoxicity was blocked by the overexpression of phosphorylated CDK9, suggesting a CDK9-dependent cell killing. TG02 suppressed transcriptional progression of anti-apoptotic proteins, and induced apoptosis in GBM cells. We further demonstrated that TG02 caused mitochondrial dysfunction and glycolytic suppression and ultimately ATP depletion in GBM. A prolonged survival was observed in GBM mice receiving combined treatment of TG02 and temozolomide. The TG02-induced decrease of CDK9 phosphorylation was confirmed in the brain tumor tissue. Conclusions: TG02 inhibits multiple survival mechanisms and synergistically decreases energy production with temozolomide, representing a promising therapeutic strategy in GBM, currently under investigation in an ongoing clinical trial.
ORGANISM(S): Homo sapiens
PROVIDER: GSE107601 | GEO | 2017/12/02
SECONDARY ACCESSION(S): PRJNA420677
REPOSITORIES: GEO
ACCESS DATA