Project description:Fragile X syndrome (FXS), the most common genetic form of intellectual disability in males, is caused by silencing of the FMR1 gene associated with hypermethylation of the CGG expansion mutation in the 5' UTR of FMR1 in FXS patients. Here, we applied recently developed DNA methylation editing tools to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/single guide RNA (sgRNA) switched the heterochromatin status of the upstream FMR1 promoter to an active chromatin state, restoring a persistent expression of FMR1 in FXS iPSCs. Neurons derived from methylation-edited FXS iPSCs rescued the electrophysiological abnormalities and restored a wild-type phenotype upon the mutant neurons. FMR1 expression in edited neurons was maintained in vivo after engrafting into the mouse brain. Finally, demethylation of the CGG repeats in post-mitotic FXS neurons also reactivated FMR1. Our data establish that demethylation of the CGG expansion is sufficient for FMR1 reactivation, suggesting potential therapeutic strategies for FXS.
Project description:Fragile X syndrome (FXS), the most common genetic form of intellectual disability in male, is caused by silencing of the FMR1 gene by hypermethylation of the CGG expansion mutation in the 5’UTR region of FMR1 in FXS patients. Here, we applied recently developed DNA methylation editing tools to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/sgRNA switched the heterochromatin status of the upstream FMR1 promoter to an active chromatin state restoring a persistent expression of FMR1 in FXS iPSCs. Neurons derived from methylation edited FXS iPSCs rescued the electrophysiological abnormalities and restored a wild-type phenotype upon the mutant neurons. FMR1 expression in edited neurons was maintained in vivo after engrafting into the mouse brain. Finally, demethylation of the CGG repeats in post-mitotic FXS neurons also reactivated FMR1. Our data establish demethylation of the CGG expansion is sufficient for FMR1 reactivation, suggesting potential therapeutic strategies for FXS.
Project description:Fragile X syndrome (FXS), the most common genetic form of intellectual disability in male, is caused by the silence of FMR1. Hypermethylation of the CGG expansion mutation in the 5’UTR region of FMR1 in FXS patients was thought to epigenetically silence FMR1. Here, we applied our previously developed DNA methylation editing tool to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/gRNA switched the heterochromatin status of the FMR1 promoter to an active chromatin status and subsequently restored FMR1 expression in FXS iPSCs. Neurons derived from methylation edited FXS iPSCs showed a similar electrophysiological property as wild-type neurons, and maintained FMR1 expression for months after engrafting into the mouse brain. Reactivation of FMR1 can be achieved in FXS neurons with demethylation of the CGG expansion. Lastly, we showed that targeted demethylation of the FMR1 promoter can reactivate FMR1 as well suggesting potential therapeutic approaches for FXS.
Project description:Fragile X syndrome (FXS), the most common genetic form of intellectual disability in male, is caused by the silence of FMR1. Hypermethylation of the CGG expansion mutation in the 5’UTR region of FMR1 in FXS patients was thought to epigenetically silence FMR1. Here, we applied our previously developed DNA methylation editing tool to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/gRNA switched the heterochromatin status of the FMR1 promoter to an active chromatin status and subsequently restored FMR1 expression in FXS iPSCs. Neurons derived from methylation edited FXS iPSCs showed a similar electrophysiological property as wild-type neurons, and maintained FMR1 expression for months after engrafting into the mouse brain. Reactivation of FMR1 can be achieved in FXS neurons with demethylation of the CGG expansion. Lastly, we showed that targeted demethylation of the FMR1 promoter can reactivate FMR1 as well suggesting potential therapeutic approaches for FXS.
Project description:Fragile X syndrome (FXS), the most common genetic form of intellectual disability in male, is caused by silencing of the FMR1 gene by hypermethylation of the CGG expansion mutation in the 5’UTR region of FMR1 in FXS patients. Here, we applied recently developed DNA methylation editing tools to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/sgRNA switched the heterochromatin status of the upstream FMR1 promoter to an active chromatin state restoring a persistent expression of FMR1 in FXS iPSCs. Neurons derived from methylation edited FXS iPSCs rescued the electrophysiological abnormalities and restored a wild-type phenotype upon the mutant neurons. FMR1 expression in edited neurons was maintained in vivo after engrafting into the mouse brain. Finally, demethylation of the CGG repeats in post-mitotic FXS neurons also reactivated FMR1. Our data establish demethylation of the CGG expansion is sufficient for FMR1 reactivation, suggesting potential therapeutic strategies for FXS.