Project description:The cellular microRNA miR-155 has been shown to be involved in lymphocyte activation and is expressed in Epstein-Barr virus (EBV)-infected cells displaying type III latency gene expression but not type I latency gene expression. We show here that the elevated levels of miR-155 in type III latency cells is due to EBV gene expression and not epigenetic differences in cell lines tested, and we show that expression in EBV-infected cells requires a conserved AP-1 element in the miR-155 promoter. Gene expression analysis was carried out in a type I latency cell line transduced with an miR-155-expressing retrovirus. This analysis identified both miR-155-suppressed and -induced cellular mRNAs and suggested that in addition to direct targeting of 3' untranslated regions (UTRs), miR-155 alters gene expression in part through the alteration of signal transduction pathways. 3' UTR reporter analysis of predicted miR-155 target genes identified the transcriptional regulatory genes encoding BACH1, ZIC3, HIVEP2, CEBPB, ZNF652, ARID2, and SMAD5 as miR-155 targets. Western blot analysis of the most highly suppressed of these, BACH1, showed lower expression in cells transduced with a miR-155 retrovirus. Inspection of the promoters from genes regulated in EBV-infected cells and in cells infected with an miR-155 retrovirus identified potential binding sequences for BACH1 and ZIC3. Together, these experiments suggest that the induction of miR-155 by EBV contributes to EBV-mediated signaling in part through the modulation of transcriptional regulatory factors.
Project description:The cellular microRNA, miR-155 has been shown to be involved in lymphocyte activation and is expressed in EBV infected cells displaying type III latency gene expression but not type I latency gene expression. We show here that the elevated levels of miR-155 in type III latency cells is due to EBV gene expression and not epigenetic differences in cell lines tested and we show that expression in EBV infected cells requires a conserved AP-1 element in the miR-155 promoter. Gene expression analysis was carried out in a type I latency cell line transduced with a miR-155 expressing retrovirus. This analysis identified both miR-155 suppressed and induced cellular mRNAs and suggested that in addition to direct targeting of 3’ UTRs, miR-155 alters gene expression in part through the alteration of signal transduction pathways. 3’ UTR reporter analysis of predicted miR-155 target genes identified the transcriptional regulatory genes, BACH1, ZIC3, HIVEP2, CEBPB, ZNF652, ARID2, and SMAD5 as miR-155 targets. Western blot analysis of the most highly suppressed of these, BACH1, showed lower expression in cells transduced with a miR-155 retrovirus. Inspection of the promoters from genes regulated in EBV infected cells and in cells infected with a miR-155 retrovirus identified potential binding sequences for BACH1 and ZIC3. Together, these experiments suggest that the induction of miR-155 by EBV contributes to EBV mediated signaling in part through the modulation of transcriptional regulatory factors. Keywords: Differential expression of miR-155 vs cntl expressing cells
Project description:The cellular microRNA, miR-155 has been shown to be involved in lymphocyte activation and is expressed in EBV infected cells displaying type III latency gene expression but not type I latency gene expression. We show here that the elevated levels of miR-155 in type III latency cells is due to EBV gene expression and not epigenetic differences in cell lines tested and we show that expression in EBV infected cells requires a conserved AP-1 element in the miR-155 promoter. Gene expression analysis was carried out in a type I latency cell line transduced with a miR-155 expressing retrovirus. This analysis identified both miR-155 suppressed and induced cellular mRNAs and suggested that in addition to direct targeting of 3’ UTRs, miR-155 alters gene expression in part through the alteration of signal transduction pathways. 3’ UTR reporter analysis of predicted miR-155 target genes identified the transcriptional regulatory genes, BACH1, ZIC3, HIVEP2, CEBPB, ZNF652, ARID2, and SMAD5 as miR-155 targets. Western blot analysis of the most highly suppressed of these, BACH1, showed lower expression in cells transduced with a miR-155 retrovirus. Inspection of the promoters from genes regulated in EBV infected cells and in cells infected with a miR-155 retrovirus identified potential binding sequences for BACH1 and ZIC3. Together, these experiments suggest that the induction of miR-155 by EBV contributes to EBV mediated signaling in part through the modulation of transcriptional regulatory factors. Keywords: Differential expression of miR-155 vs cntl expressing cells The EBV positive Burkitt's lymphoma cell line, Akata was infected with a control (pEhyg-miRCntl) or a microRNA-155 expressing (pEhyg-miR-155) retrovirus. Duplicate infections with the control retrovirus and with the miR-155 retrovirus were carried out. Control and miR-155 infection pair 1 were run on an array as well as a dye swap. Control and miR-155 infection pair 2 were similarly run on an array as well as a second array containing a dye swap.
Project description:The cellular microRNA, miR-155 has been shown to be involved in lymphocyte activation and is expressed in EBV infected cells displaying type III latency gene expression but not type I latency gene expression. We show here that the elevated levels of miR-155 in type III latency cells is due to EBV gene expression and not epigenetic differences in cell lines tested and we show that expression in EBV infected cells requires a conserved AP-1 element in the miR-155 promoter. Gene expression analysis was carried out in a type I latency cell line transduced with a miR-155 expressing retrovirus. This analysis identified both miR-155 suppressed and induced cellular mRNAs and suggested that in addition to direct targeting of 3’ UTRs, miR-155 alters gene expression in part through the alteration of signal transduction pathways. 3’ UTR reporter analysis of predicted miR-155 target genes identified the transcriptional regulatory genes, BACH1, ZIC3, HIVEP2, CEBPB, ZNF652, ARID2, and SMAD5 as miR-155 targets. Western blot analysis of the most highly suppressed of these, BACH1, showed lower expression in cells transduced with a miR-155 retrovirus. Inspection of the promoters from genes regulated in EBV infected cells and in cells infected with a miR-155 retrovirus identified potential binding sequences for BACH1 and ZIC3. Together, these experiments suggest that the induction of miR-155 by EBV contributes to EBV mediated signaling in part through the modulation of transcriptional regulatory factors. Keywords: Gene expression analysis in EBV positive vs EBV negative cells
Project description:The oncogenic microRNA (miRNA) miR-155 is the most frequently upregulated miRNA in Epstein-Barr virus (EBV)-positive B cell malignancies and is upregulated in other nonviral lymphomas. Both EBV nuclear antigen 2 (EBNA2) and the B cell transcription factor interferon regulatory factor 4 (IRF4) are known to activate transcription of the host cell gene from which miR-155 is processed (miR-155HG; BIC). EBNA2 also activates IRF4 transcription, indicating that EBV may upregulate miR-155 through direct and indirect mechanisms. The mechanism of transcriptional regulation of IRF4 and miR-155HG by EBNA2, however, has not been defined. We demonstrate that EBNA2 can activate IRF4 and miR-155HG expression through specific upstream enhancers that are dependent on the Notch signaling transcription factor RBPJ, a known binding partner of EBNA2. We demonstrate that in addition to the activation of the miR-155HG promoter, IRF4 can also activate miR-155HG via the upstream enhancer also targeted by EBNA2. Gene editing to remove the EBNA2- and IRF4-responsive miR-155HG enhancer located 60 kb upstream of miR-155HG led to reduced miR-155HG expression in EBV-infected cells. Our data therefore demonstrate that specific RBPJ-dependent enhancers regulate the IRF4-miR-155 expression network and play a key role in the maintenance of miR-155 expression in EBV-infected B cells. These findings provide important insights that will improve our understanding of miR-155 control in B cell malignancies.IMPORTANCE MicroRNA miR-155 is expressed at high levels in many human cancers, particularly lymphomas. Epstein-Barr virus (EBV) infects human B cells and drives the development of numerous lymphomas. Two genes carried by EBV (LMP1 and EBNA2) upregulate miR-155 expression, and miR-155 expression is required for the growth of EBV-infected B cells. We show that the EBV transcription factor EBNA2 upregulates miR-155 expression by activating an enhancer upstream from the miR-155 host gene (miR-155HG) from which miR-155 is derived. We show that EBNA2 also indirectly activates miR-155 expression through enhancer-mediated activation of IRF4 IRF4 then activates both the miR-155HG promoter and the upstream enhancer, independently of EBNA2. Gene editing to remove the miR-155HG enhancer leads to a reduction in miR-155HG expression. We therefore identify enhancer-mediated activation of miR-155HG as a critical step in promoting B cell growth and a likely contributor to lymphoma development.
Project description:MicroRNAs have been implicated in the modulation of gene expression programs important for normal and cancer cell development. miR-155 is known to play a role in B-cell development and is upregulated in various B-cell lymphomas, including several that are latently infected with Epstein-Barr virus (EBV). We show here that EBV infection of primary human B lymphocytes leads to the sustained elevation of miR-155 and its precursor RNA, BIC. The EBV-encoded latency membrane protein 1 (LMP1) can partially reconstitute BIC activation in B lymphocytes but not in epithelial cell cultures. LMP1 is a potent activator of NF-kappaB signaling pathways and is essential for EBV immortalization of B lymphocytes. An inhibitor to miR-155 further stimulated NF-kappaB responsive gene transcription, and IKKepsilon was identified as a potential target of miR-155 translational repression. Remarkably, miR-155 inhibitor reduced EBNA1 mRNA and the EBV copy number in latently infected cells. This suggests that miR-155 contributes to EBV immortalization by modulation of NF-kappaB signaling and the suppression of host innate immunity to latent viral infection.
Project description:MicroRNA miR-155 is expressed at elevated levels in human cancers including cancers of the lung, breast, colon, and a subset of lymphoid malignancies. In B cells, miR-155 is induced by the oncogenic latency gene expression program of the human herpesvirus Epstein-Barr virus (EBV). Two other oncogenic herpesviruses, Kaposi's sarcoma-associated herpesvirus and Marek's disease virus, encode functional homologues of miR-155, suggesting a role for this microRNA in the biology and pathogenesis of these viruses. Bone morphogenetic protein (BMP) signaling is involved in an array of cellular processes, including differentiation, growth inhibition, and senescence, through context-dependent interactions with multiple signaling pathways. Alteration of this pathway contributes to a number of disease states including cancer. Here, we show that miR-155 targets the 3' untranslated region of multiple components of the BMP signaling cascade, including SMAD1, SMAD5, HIVEP2, CEBPB, RUNX2, and MYO10. Targeting of these mediators results in the inhibition of BMP2-, BMP6-, and BMP7-induced ID3 expression as well as BMP-mediated EBV reactivation in the EBV-positive B-cell line, Mutu I. Further, miR-155 inhibits SMAD1 and SMAD5 expression in the lung epithelial cell line A549, it inhibits BMP-mediated induction of the cyclin-dependent kinase inhibitor p21, and it reverses BMP-mediated cell growth inhibition. These results suggest a role for miR-155 in controlling BMP-mediated cellular processes, in regulating BMP-induced EBV reactivation, and in the inhibition of antitumor effects of BMP signaling in normal and virus-infected cells.
Project description:Tetraspanin CD63 is a cluster of cell surface proteins with four transmembrane domains; it is associated with tetraspanin-enriched microdomains and typically localizes to late endosomes and lysosomes. CD63 plays an important role in the cellular trafficking of different proteins, EV cargo sorting, and vesicle formation. We have previously shown that CD63 is important in LMP1 trafficking to EVs, and this also affects LMP1-mediated intracellular signaling including MAPK/ERK, NF-κB, and mTOR activation. Using the BioID method combined with mass spectrometry, we sought to define the broad CD63 interactome and how LMP1 modulates this network of interacting proteins. We identified a total of 1600 total proteins as a network of proximal interacting proteins to CD63. Biological process enrichment analysis revealed significant involvement in signal transduction, cell communication, protein metabolism, and transportation. The CD63-only interactome was enriched in Rab GTPases, SNARE proteins, and sorting nexins, while adding LMP1 into the interactome increased the presence of signaling and ribosomal proteins. Our results showed that LMP1 alters the CD63 interactome, shifting the network of protein enrichment from protein localization and vesicle-mediated transportation to metabolic processes and translation. We also show that LMP1 interacts with mTOR, Nedd4 L, and PP2A, indicating the formation of a multiprotein complex with CD63, thereby potentially regulating LMP1-dependent mTOR signaling. Collectively, the comprehensive analysis of CD63 proximal interacting proteins provides insights into the network of partners required for endocytic trafficking and extracellular vesicle cargo sorting, formation, and secretion.
Project description:The Cancer Genome Atlas (TCGA) microRNA (miRNA) initiative has revealed a pivotal role for miRNAs in cancer. Utilizing the TCGA raw data, we performed the first mapping of viral miRNA sequences within cancer and adjacent normal tissues. Results were integrated with TCGA RNA-seq to link the expression of viral miRNAs to the phenotype. Using clinical data and viral miRNA mapping results we also performed outcome analysis. Three lines of evidence lend credence to an active role of viral miRNAs in solid malignancies. First, expression of viral miRNA is consistently higher in cancerous compared to adjacent noncancerous tissues. Second, viral miRNA expression is associated with significantly worse clinical outcome among patients with early stage malignancy. These patients are also featured by increased expression of PD1/PD-L1, a pathway implicated in tumors escaping immune destruction. Finally, a particular cluster of EBV-miRNA (miR-BART2, miR-BART4, miR-BART5, miR-BART18, and miR-BART22) is associated with expression of cytokines known to inhibit host response to cancer. Quantification of specific viral miRNAs may help identify patients who are at risk of poor outcome. These patients may be candidates for novel therapeutic strategies incorporating antiviral agents and/or inhibitors of the PD-1/PD-L1 pathway.