N6-Methyladenine DNA Methylation in Japonica and Indica Rice Genomes and Its Association with Gene Expression, Plant Development, and Stress Responses [RNA-Seq Nipponbare]
Ontology highlight
ABSTRACT: N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants.
Project description:N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants.
Project description:N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants.
Project description:N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants.
Project description:N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants.
Project description:N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants.
Project description:N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants.
Project description:N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants.
Project description:There are two main types of root systems in flowering plants, which are taproot systems in dicot and fibrous root systems in monocot. The cellular and molecular mechanism involved in root development are mainly from the study of dicot model Arabidopsis thaliana. However, mechanisms of root development and their conservation and divergence in monocot, which including the major crops, remain largely elusive. Here we profile the transcriptomes of more than 20,000 single cells in the root tips of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Single-cell analysis coupled with in situ hybridization identify the cell type-specific marker genes and annotate all the clusters. Comparison of single-cell transcriptome and analysis of mark gene expression suggest well-conserved molecular landscape between rice Nip and 93-11. Moreover, our analysis suggests specific functions gene expression patterns for each cell type cluster, including the hormone genes. Comparison to Arabidopsis single-cell RNA-sequencing dataset reveals extensive differences between Arabidopsis and rice cell types, and species-specific features emphasize the importance of directly studying rice root. Our study reveals transcriptome landscape of major cell types of rice root in singe-cell resolution and provides molecular insight of the cell type morphology of cell type evolution in plants.
Project description:There are two main types of root systems in flowering plants, which are taproot systems in dicot and fibrous root systems in monocot. The cellular and molecular mechanism involved in root development are mainly from the study of dicot model Arabidopsis thaliana. However, mechanisms of root development and their conservation and divergence in monocot, which including the major crops, remain largely elusive. Here we profile the transcriptomes of more than 20,000 single cells in the root tips of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Single-cell analysis coupled with in situ hybridization identify the cell type-specific marker genes and annotate all the clusters. Comparison of single-cell transcriptome and analysis of mark gene expression suggest well-conserved molecular landscape between rice Nip and 93-11. Moreover, our analysis suggests specific functions gene expression patterns for each cell type cluster, including the hormone genes. Comparison to Arabidopsis single-cell RNA-sequencing dataset reveals extensive differences between Arabidopsis and rice cell types, and species-specific features emphasize the importance of directly studying rice root. Our study reveals transcriptome landscape of major cell types of rice root in singe-cell resolution and provides molecular insight of the cell type morphology of cell type evolution in plants.
Project description:N6-methyldeoxyadenosine (6mA) is a newly-discovered DNA modification that plays a role in regulating plant adaptation to abiotic stresses. However, the changes and molecular regulatory mechanisms of N6-methyldeoxyadenosine under cold stress in plants remain uncertain. Here, we found the global level of 6mA in both Arabidopsis and rice are raised after cold treatment. Genome-wide profiling of 6mA revealed that 6mA peaks are primarily distributed within gene body regions under both normal and low-temperature conditions. Additionally, genes that were up-methylated were enriched in various biological processes, while down-methylated genes did not exhibit any significant enrichment. Association analysis showed that 6mA was positively correlated with gene expression level and 6mA-containing genes displayed a significantly higher expression level than non-6mA-containing genes. Joint analysis of the 6mA methylome and transcriptome of Arabidopsis and rice revealed that the fluctuations in 6mA levels caused by exposure to cold did not correlate with the changes of transcript levels in response to low temperatures. Moreover, we found that 6mA modified orthologous genes exhibit high expression levels. However, upon cold treatment, only a small amount of differentially 6mA-methylated orthologous genes were shared between Arabidopsis and rice. In sum, this study profiled the changes of 6mA in response to cold temperature and has unlocked the potential of this DNA modification in regulating the expression of stress-related genes.