Pancreatic Islet-Autonomous Signals Modulate Identity Changes of Glucagon+ α-Cells
Ontology highlight
ABSTRACT: The mechanisms restricting regeneration and maintaining cell identity upon injury are poorly characterized in higher vertebrates. Upon β-cell loss, 1-2% of the glucagon-producing α-cells spontaneously engage insulin production in mice. Here we explore the mechanisms of this plasticity. We show that the adaptive α-cell identity changes are constrained by intra-islet Insulin- and Smoothened-mediated signaling, among others. Combining β-cell loss, or insulin signaling inhibition, with Smoothened inactivation in α- or δ-cells, stimulates insulin production in more α-cells. These findings suggest that removing constitutive “brake signals” is crucial for neutralizing the refractoriness to adaptive cell-fate changes. It appears that cell identity maintenance is an active process mediated by repressive signals curbing an intrinsic trend of differentiated cells to change.
Project description:Conversion of α-cells into insulin-producers upon β-cell loss is modulated by constitutive signals ensuring α-cell identity maintenance. Here, we characterized the plasticity of mouse α-cells by profiling their transcriptome at different time-points after massive β-cell ablation. Our results show that α-cells undergo stage-specific transcriptional changes 5- and 15-days post-diphtheria toxin (DT)-mediated β-cell ablation. At 5 days, α-cells transiently upregulate various genes associated with interferon signaling and proliferation, including Interferon Induced Protein with Tetratricopeptide Repeats 3 (Ifit3). Subsequently, at 15 days post β-cell ablation, α-cells undergo a transient downregulation of genes from several pathways including Insulin receptor, mTOR and MET signaling. These results pinpoint novel markers discriminating α-cells at different stages after acute β-cell loss, and highlight additional signaling pathways that could be involved in reprogramming the functional identity of α-cells.
Project description:Glucagon serves as an important regulatory hormone for regulating blood glucose concentrations with tight feedback control with insulin and glucose. There are critical gaps in our understanding of glucagon kinetics, pancreatic α cell function and intra-islet feedback network that are disrupted in type 1 diabetes. This is important for translational research applications of evolving dual-hormone (insulin+glucagon) closed-loop artificial pancreas algorithms and their usage in type 1 diabetes. Thus, it is important to accurately measure glucagon kinetics in vivo and to develop robust models of glucose-insulin-glucagon interplay that could inform next generation of artificial pancreas algorithms.
Project description:Glucagon receptor (GCGR) is a potential target for diabetes therapy. Several emerging GCGR antagonism-based therapies are under pre-clinical and clinical development. However, the GCGR antagonism as well as GCGR deficient animal accompanied with α-cell hyperplasia and hyperglucagonemia, which may limit the application of GCGR antagonism. To better understand the physiological changes in the α cells during the GCGR disruption, we performed the single cell sequencing of α cells isolated from control and gcgr-/- zebrafish. We found that α cells in gcgr-/- zebrafish dramatically increased glucagon (both gcga and gcgb) expression, we also found that several transcriptional factors that regulate glucagon expression were also increased. Based on the sequencing data, we further experimentally confirmed that gcgr-/- up-regulated glucagon mRNA level by in situ hybridization, and the gcgr-/- increased glucagon promoter activity indicated by reporter line Tg(gcga: GFP). Moreover, our results also revealed that α cells increased glucagon granule population and glucagon level in gcgr-/- zebrafish. These data suggested that hyperglucagonemia in the organism of GCGR antagonism not only contributed by the α-cell hyperplasia but also contributed by the increased glucagon expression and secretion from α cells. Our study provided more comprehensive understanding of physiological changes of α-cell during the GCGR disruption.
Project description:Generation of mature cells with stable functional identities is crucial for developing cell-based replacement therapies. Current global efforts to produce insulin-secreting beta-like cells to treat diabetes are hampered by the lack of tools to reliably assess cellular identity. We conducted a thorough single-cell transcriptomics meta-analysis to generate robust genesets defining the identity of human adult alpha-, beta-, gamma- and delta-cells. After extensive validation, we showed the efficacy of the novel genesets to define changes in islet cell identity, whether during embryonic development or in different experimental setups aimed at developing new functional glucose-responsive insulin-secreting cells, such as through pluripotent stem-cell differentiation or islet cell reprogramming protocols. Finally, we evaluated whether the perturbed metabolic conditions typical of diabetes influence islet cell identity. We observed that alpha-cells from diabetic donors exhibit an altered phenotype. In conclusion, these novel genesets represent valuable tools that robustly benchmark gain and loss in islet cell identity traits.
Project description:Glucagon is secreted from pancreatic α-cells, and hypersecretion (hyperglucagonemia) contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma by high-resolution-proteomics, we identified several glucagon variants among which proglucagon 1-61 (PG 1-61) appears to be the most abundant form. PG 1-61 was secreted in obese subjects before and as well after gastric bypass surgery with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β-cells demonstrated that PG 1-61 dose-dependently increased levels of cAMP, through the glucagon receptor, and increased insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. As a consequence, PG 1-61 increased blood glucose and plasma insulin and decreased plasma levels of amino acids in vivo. Glucagon variants, such as PG 1-61, may contribute to glucose regulation by stimulating hepatic glucose production and insulin secretion.
Project description:The cellular identity of pancreatic polypeptide (Ppy)-expressing γ-cells, the rarest pancreatic islet cell-type, remains elusive. Within islets, glucagon and somatostatin, released respectively from α- and δ-cells, modulate the secretion of insulin by β-cells. Dysregulation of insulin production raises blood glucose levels, leading to diabetes onset. Here, we present the genetic signature of human and mouse γ-cells. Using newly developed tools, we identified a set of genes and pathways defining their functional identity. We found that the γ-cell population is heterogeneous, with subsets of cells producing another hormone in addition to Ppy. These bihormonal cells share identity markers typical of the other islet cell-types. In mice, Ppy gene inactivation or conditional γ-cell ablation did not alter glycemia nor body weight. Interestingly, upon β-cell injury induction, γ-cells exhibited gene expression changes and some of them engaged insulin production, like α- and δ-cells. In conclusion, we provide a comprehensive characterization of γ-cells and highlight their plasticity and therapeutic potential.
Project description:RNA sequencing is used to compare genes regulated by a constitutively active form of Smoothened, a protein critical to Hedgehog signaling, and a constitutively active form of the alpha subunit of the heterotrimeric G proteins G13, which shares some of the primary actions of Smoothened.
Project description:Natural and stable cell identity switches, where terminally-differentiated cells convert into different cell-types when stressed, represent a widespread regenerative strategy in animals, yet they are poorly documented in mammals. In mice, some glucagon-producing pancreatic α-cells become insulin expressers upon ablation of insulin-secreting β-cells, promoting diabetes recovery. Whether human islets also display this plasticity for reconstituting β-like cells, especially in diabetic conditions, remains unknown. Here we show that two different islet non-β-cell types, α- and γ–cells, obtained from deceased non-diabetic or diabetic human donors can be lineage-traced and induced to produce insulin and secrete it in response to glucose. When transplanted into diabetic mice, converted human α-cells reverse diabetes and remain producing insulin even after 6 months. Insulin-producing α-cells maintain α-cell markers, as seen by deep transcriptomic and proteomic characterization, and display hypo-immunogenic features when exposed to T-cells derived from diabetic patients. These observations provide conceptual evidence and a molecular framework for a mechanistic understanding of in situ cell plasticity in islet cells, as well as in other organs, as a therapy for degenerative diseases by fostering the highly-regulated intrinsic cell regeneration.
Project description:Natural and stable cell identity switches, where terminally-differentiated cells convert into different cell-types when stressed, represent a widespread regenerative strategy in animals, yet they are poorly documented in mammals. In mice, some glucagon-producing pancreatic α-cells become insulin expressers upon ablation of insulin-secreting β-cells, promoting diabetes recovery. Whether human islets also display this plasticity for reconstituting β-like cells, especially in diabetic conditions, remains unknown. Here we show that two different islet non-β-cell types, α- and γ–cells, obtained from deceased non-diabetic or diabetic human donors can be lineage-traced and induced to produce insulin and secrete it in response to glucose. When transplanted into diabetic mice, converted human α-cells reverse diabetes and remain producing insulin even after 6 months. Insulin-producing α-cells maintain α-cell markers, as seen by deep transcriptomic and proteomic characterization, and display hypo-immunogenic features when exposed to T-cells derived from diabetic patients. These observations provide conceptual evidence and a molecular framework for a mechanistic understanding of in situ cell plasticity in islet cells, as well as in other organs, as a therapy for degenerative diseases by fostering the highly-regulated intrinsic cell regeneration.