A study of temporal transcriptional changes induced by a low concentration BPDE in cultured human cells
Ontology highlight
ABSTRACT: The environmental carcinogen, (±)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), causes bulky-adduct DNA damages, triggers certain signaling pathways, and elicits gene expression changes. Here, we focused on the temporal gene expression changes induced by a low concentration (0.05 µM) BPDE in human amnion epithelial FL cells. Differential gene expression profiles at 1, 10 and 22 h post BPDE treatment were obtained using Affymetrix HG-U133 Plus 2.0 oligonucleotide microarrays. A cohort of gene expression changes related to cell cycle progression, cell growth or apoptosis, stress response, and post-transcriptional regulation was validated with quantitative real-time RT-PCR. The alteration of several cell cycle-related genes was correlated and possibly contributed to the cell cycle arrest phenotype. Paradoxical transcriptional regulations regarding cell growth or apoptosis emerged in response to BPDE treatment, which indicated that cell fate was determined by integrated signals. The temporal transcriptional changes would be of help to clarify the molecular mechanism of cellular response to BPDE. Keywords: time course
ORGANISM(S): Homo sapiens
PROVIDER: GSE10979 | GEO | 2009/01/01
SECONDARY ACCESSION(S): PRJNA107177
REPOSITORIES: GEO
ACCESS DATA