Liver Cyprinus carpio PFOS experiment
Ontology highlight
ABSTRACT: Perfluorooctane sulfonate (PFOS) has been manufactured for over 50 years in increasing quantities and has been used for several industrial and commercial aims. Due to the persistence and the bioaccumulation of this pollutant, it can be found worldwide in wildlife and humans. Biochemical effects of PFOS exposure are mainly studied in mammalian model species and information about effects on fish species remain largely scarce. This lack of toxicity data points out that there is an urgent need for the mechanistic molecular understanding of the mode of action of this pollutant. In the present study, common carp (Cyprinus carpio) was exposed through water for 14 days at concentrations of 0.1; 0.5 and 1 mg/l PFOS. Liver was selected as target tissue. Custom microarrays were constructed from cDNA libraries obtained with Suppression Subtractive Hybridization-Polymerase chain reaction (SSH-PCR) experiments. Microarray data revealed that the expression of several genes in the liver was influenced by PFOS exposure and real-time PCR was used to confirm these gene expression changes. The affected genes were mainly involved in energy metabolism, reproduction and stress response. Furthermore, the relative condition factor and the hepatosomatic index of the exposed fish were significantly lower after 14 days of exposure as well as the available glycogen reserves. At all levels of biological organization, indications of a trade-off between the metabolic cost of toxicant exposure on one hand and processes vital to the survival of the organism on the other hand were seen. Our results support the prediction that increases in energy expenditure negatively affects processes vital to the survival of an organism, such as growth. Keywords: PFOS, common carp, microarray, condition factor, energy reserves, metabolic cost
ORGANISM(S): Cyprinus carpio
PROVIDER: GSE10980 | GEO | 2008/08/15
SECONDARY ACCESSION(S): PRJNA107179
REPOSITORIES: GEO
ACCESS DATA