Transcriptomics

Dataset Information

0

EIF4GI Links Nutrient Sensing by mTOR to Cell Proliferation and Inhibition of Autophagy


ABSTRACT: Translation initiation factors have complex functions in cells which are not yet understood. We show that depletion of initiation factor eIF4GI only modestly reduces overall protein synthesis in cells, but phenocopies nutrient-starvation or inhibition of protein kinase mTOR, a key nutrient sensor. eIF4GI depletion impairs cell proliferation, bioenergetics and mitochondrial activity, thereby promoting autophagy. Translation of mRNAs involved in cell growth, proliferation and bioenergetics were selectively inhibited by reduction of eIF4GI, whereas mRNAs encoding proliferation inhibitors and catabolic pathway factors were increased. Depletion or over-expression of other eIF4G family members did not recapitulate these results. The majority of mRNAs that were translationally impaired with eIF4GI depletion were excluded from polyribosomes due to the presence of multiple upstream open reading frames and low mRNA abundance. These results suggest that the high levels of eIF4GI observed in many breast cancers might act to specifically increase proliferation, prevent autophagy and release tumor cells from control by nutrient sensing. Global regulation of transcription and polysomal association in eIF4GI-silenced cells. Keywords: Gene Silencing

ORGANISM(S): Homo sapiens

PROVIDER: GSE11011 | GEO | 2008/04/01

SECONDARY ACCESSION(S): PRJNA107097

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2008-06-11 | E-GEOD-11011 | biostudies-arrayexpress
2013-07-26 | GSE29386 | GEO
2013-07-26 | E-GEOD-29386 | biostudies-arrayexpress
2016-07-03 | E-GEOD-76367 | biostudies-arrayexpress
2023-10-24 | PXD041682 | Pride
2016-04-24 | GSE61753 | GEO
2016-01-01 | GSE76367 | GEO
2017-05-29 | GSE87614 | GEO
2019-12-04 | GSE124290 | GEO
2017-10-11 | E-MTAB-5836 | biostudies-arrayexpress