Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells
Ontology highlight
ABSTRACT: Small interfering RNAs (siRNAs) direct RNA interference (RNAi) in eukaryotes. In flies, somatic cells produce siRNAs from exogenous double-stranded RNA as a defense against viral infection. Here, we identify 21-nt long, endogenous siRNAs (endo-siRNAs) corresponding to transposons and heterochromatic sequences in the somatic cells of Drosophila melanogaster. We also detected endo-siRNAs complementary to mRNAs: these siRNAs disproportionately mapped to the complementary regions of overlapping mRNAs predicted to form dsRNA in vivo. Normal accumulation of somatic endo-siRNAs requires the siRNA-generating ribonuclease, Dicer-2, and the RNAi effector protein, Ago2. We propose that endo-siRNAs generated by the fly RNAi pathway silence selfish genetic elements in the soma much as piRNAs do in the germ line. Keywords: Small RNA detection and quantification.
ORGANISM(S): Drosophila melanogaster
PROVIDER: GSE11019 | GEO | 2008/04/11
SECONDARY ACCESSION(S): PRJNA107113
REPOSITORIES: GEO
ACCESS DATA