SAM68-specific splicing is required for proper selection of alternative 3'UTR isoforms in the nervous system
Ontology highlight
ABSTRACT: Neuronal alternative splicing is dynamically regulated in a spatiotemporal fashion. We previously found that STAR family proteins (SAM68, SLM1, SLM2) regulate spatiotemporal alternative splicing in the nervous system. However, the whole aspect of alternative splicing programs governed by STARs remains unclear. We deciphered the alternative splicing programs of SAM68 and SLM1 proteins using transcriptomics. We reveal that SAM68 and SLM1 encode distinct alternative splicing programs; SAM68 preferentially controls alternative last exon (ALE) splicing. Interleukin 1-receptor accessory protein (Il1rap) is a novel target for SAM68. The usage of Il1rap ALEs results in mainly two variants encoding two functionally different isoforms, a membrane-bound (mIL1RAcP) and a soluble (sIL1RAcP) type. The brain exclusively expresses mIL1RAcP. SAM68 knockout results in remarkable conversion into sIL1RAcP in the brain, which significantly disturbs IL1RAcP neuronal function. Thus, we uncover the critical role of proper neuronal isoform selection through ALE choice by the SAM68-specific splicing program.
Project description:The paralog RNA binding proteins (RBPs) Sam68 and SLM2 are co-expressed in the cerebral cortex and display very similar splicing activity. However, their relative function(s) in this context is unknown. By performing a time-course analysis, we found that these RBPs exhibit an opposite expression pattern during development. Sam68 expression declines postnatally while SLM2 increases after birth, and this developmental pattern is reinforced by hierarchical control of Sam68 expression by SLM2. Analysis of Sam68:Slm2 double knockout (Sam68:Slm2dko) mice revealed hundreds of exons that are sensitive to concomitant ablation of these proteins. Moreover, parallel analysis of single and double knockout cortices indicated that exons regulated mainly by SLM2 are characterized by a dynamic splicing pattern during development, whereas Sam68-dependent exons are spliced at relatively constant rates. Dynamic splicing of SLM2-sensitive exons is completely suppressed in the Sam68:Slm2dko developing cortex. Sam68:Slm2dko mice die perinatally with defects in neurogenesis and in neuronal differentiation, and the development of a hydrocephalus, consistent with splicing alterations in genes related to these biological processes. Thus, our study reveals that maintenance of the Sam68 and Slm2 paralog genes encoding homologous RBPs enables the orchestration of a dynamic splicing program while ensuring a robust redundant mechanism that supports proper cortical development.
Project description:Male germ cells express the widest repertoire of transcript variants in mammalian tissues. Nevertheless, factors and mechanisms underlying such pronounced diversity are largely unknown. The splicing regulator Sam68 is highly expressed in meiotic cells and its ablation results in defective spermatogenesis. Herein, we uncover an extensive splicing program operated by Sam68 across meiosis, primarily characterized by alternative last exon (ALE) regulation in genes of functional relevance for spermatogenesis. Lack of Sam68 preferentially causes premature transcript termination at internal polyadenylation sites.
Project description:The recognition of synaptic partners and specification of synaptic properties are fundamental for the function of neuronal circuits. 'Terminal selector' transcription factors coordinate the expression of terminal gene batteries that specify cell type-specific properties. Moreover, pan-neuronal alternative splicing regulators have been implicated in directing neuronal differentiation. However, the cellular logic of how splicing regulators instruct specific synaptic properties remains poorly understood. Here, we combine genome-wide mapping of mRNA targets and cell type-specific loss-of-function studies to uncover the contribution of the nuclear RNA binding protein SLM2 to hippocampal synapse specification. We find that SLM2 preferentially binds and regulates alternative splicing of transcripts encoding synaptic proteins, thereby generating cell type-specific isoforms. In the absence of SLM2, cell type-specification, differentiation, and viability are unaltered and neuronal populations exhibit normal intrinsic properties. By contrast, cell type-specific loss of SLM2 results in highly selective, non-cell autonomous synaptic phenotypes, altered synaptic transmission, and associated defects in a hippocampus-dependent memory task. Thus, alternative splicing provides a critical layer of gene regulation that instructs specification of neuronal connectivity in a trans-synaptic manner.
Project description:The metabolic conversion of oxidative phosphorylation to glycolysis provides tumor cells with energy and biosynthetic substrates, thereby promoting tumorigenesis and malignant progression. However, the mechanisms controlling the tumor metabolic switch is still not entirely clear. Here we demonstrate that SAM68 (gene name: KHDRBS1) as a splicing regulatory factor is frequently overexpressed in Lung adenocarcinoma (LUAD) and negatively correlated with the prognosis of LUAD patients. we find SAM68 promotes LUAD cells tumorigenesis and metastasis both in vitro and in vivo by regulating cancer metabolic switch. SAM68 drives cancer metabolism by mediating alternative splicing of Pyruvate kinase (PKM) pre-mRNAs, finally promoting the formation of PKM2. Mechanically, Sam68 interacted with the splicing repressor hnRNP A1, and depletion of hnRNP A1 or mutations that impair this interaction attenuated the PKM splicing regulation. Together, our work demonstrates key roles of SAM68 in the cancer metabolic conversion by regulating alternative splicing and SAM68 may be a promising therapeutic target for treating LUAD.This project looks into how SAM68 levels affect cancer cell phenotype in vitro
Project description:ELAV/Hu factors are conserved RNA binding proteins that play diverse roles in mRNA processing and regulation. The founding member, Drosophila Elav, was recognized as a vital neural factor 35 years ago. Nevertheless, still little is known about its impacts on the transcriptome, and potential functional overlap with its paralogs. Building on our recent findings that neural-specific lengthened 3' UTR isoforms are co-determined by ELAV/Hu factors, we address their impacts on splicing. While only a few splicing targets of Drosophila are known, we find that ectopic expression of the three family members (Elav, Fne and Rbp9) induces overlapping changes to hundreds of cassette exon and dozens of alternative last exon (ALE) splicing events. Reciprocally, double mutants of elav/fne, but not elav alone, have opposite effects on both classes of regulated mRNA processing events in the larval CNS. While manipulation of Drosophila ELAV/Hu factors induces both exon skipping and inclusion, motif analysis indicates their major direct effects are to suppress cassette exon usage. Moreover, the roles of ELAV/HU factors in global promotion of distal ALE splicing are mechanistically linked to terminal 3' UTR extensions in neurons, since both involve local suppression of proximal polyadenylation signals via ELAV/Hu binding sites downstream of cleavage sites. The phenotypic impact of combined ELAV/Hu activities in neural mRNA processing is overt, since fne loss strongly enhances neuronal differentiation phenotypes in elav mutants. Finally, we provide evidence for conservation in mammalian neurons, which undergo broad programs of distal ALE and APA lengthening, linked to ELAV/Hu motifs downstream of regulated polyadenylation sites. Overall, ELAV/Hu proteins orchestrate multiple conserved programs of neuronal mRNA processing by suppressing alternative exons and polyadenylation sites.
Project description:The mechanisms by which entire programs of gene regulation emerged during evolution are poorly understood. Neuronal microexons represent the most conserved class of alternative splicing in vertebrates and are critical for proper brain development and function. Here, we discover neural microexon programs in non-vertebrate species and trace their origin to bilaterian ancestors through the emergence of a previously uncharacterized ‘enhancer of microexons' (eMIC) protein domain. The eMIC domain originated as an alternative, neural-enriched splice isoform of the pan-eukaryotic Srrm2/SRm300 splicing factor gene, and subsequently became fixed in the vertebrate and neuronal-specific splicing regulator Srrm4/nSR100 and its paralog Srrm3. Remarkably, the eMIC domain is necessary and sufficient for microexon splicing, and functions by interacting with the earliest components required for exon recognition. The emergence of a novel domain with restricted expression in the nervous system thus resulted in the evolution of splicing programs that contributed to qualitatively expand neuronal molecular complexity in bilaterians.
Project description:Our previous studies of proteomic-coupled-network analysis of AR protein interaction complexes (Paliouras et al., Integrative Biology, 2011) identified a number of proteins involved in RNA metabolism, specifically alternative RNA splicing. We selected two interacting RNA splicing proteins, SAM68 and DDX5 to examine RNA splicing events in prostate cancer (PCa). This analysis suggests a much more robust effect on RNA splicing with AR dictating either an exon-inclusion or -exclusion pathway. To establish the true physiological roles of AR in alternative RNA splicing, we opted to further examine the changes in global splicing profiles of LNCaP PCa cells, stimulated with and without androgens in conjunction with overexpression studies of SAM68 and DDX5.
Project description:Sam68 is a member of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins and its role is modulated by post-translational modifications, including serine/threonine phosphorylation, that differ at various stages of the cell cycle. However, the molecular basis and mechanisms of these modulations remain largely unknown. Here, we combined mass spectrometry, NMR spectroscopy, and cell biology techniques to provide a comprehensive post-translational modification (PTM) mapping of Sam68 at different stages of the cell cycle in HEK293 and HCT116 cells. We established that Sam68 is specifically phosphorylated at T33 and T317 by Cdk1, and demonstrated that these phosphorylation events reduce the binding of Sam68 to RNA, control its cellular localization, and reduce its alternative splicing activity, leading to a reduction in the induction of apoptosis and an increase in the proliferation of HCT116 cells.
Project description:Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.