ABSTRACT: Avian beaks show extreme species-specific variability in morphology, though they develop from the same primordial structures. In both humans and birds, cranial neural crest cells are the primary source of mesenchyme for the frontonasal prominence; previous work has shown that these cells contain molecular information that regulate species-specific facial variation. To determine the molecular basis of avian craniofacial patterning, we have gene expression profiled micro-dissected cranial neural crest cells from the frontonasal prominence of three bird species (chickens, quails, and ducks) during embryonic development. These changes in gene expression were measured on a custom built, cross-species, long oligonucleotide microarray that interrogates the vast majority of transcription factor (TF) genes plus a wide variety of signaling pathways. Samples were isolated at two developmental stages, before (Hamburger Hamilton stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. Keywords: cross-species comparison
ORGANISM(S): Coturnix japonica Mus musculus Gallus gallus Homo sapiens Anas platyrhynchos
Project description:Avian beaks show extreme species-specific variability in morphology, though they develop from the same primordial structures. In both humans and birds, cranial neural crest cells are the primary source of mesenchyme for the frontonasal prominence; previous work has shown that these cells contain molecular information that regulate species-specific facial variation. To determine the molecular basis of avian craniofacial patterning, we have used Next-Generation sequencing to profile all 20-40nt microRNAs from micro-dissected cranial neural crest cells from the frontonasal prominence of three bird species (chickens, quails, and ducks). Samples for each species were isolated at two developmental stages, before (Hamilton Hamburger stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. Examination of microRNA expression in frontonasal neural crest cells of 3 bird species at two developmental stages. Includes some biological replicates and one technical replicate.
Project description:Avian beaks show extreme species-specific variability in morphology, though they develop from the same primordial structures. In both humans and birds, cranial neural crest cells are the primary source of mesenchyme for the frontonasal prominence; previous work has shown that these cells contain molecular information that regulate species-specific facial variation. To determine the molecular basis of avian craniofacial patterning, we have used Next-Generation sequencing to profile all 20-40nt microRNAs from micro-dissected cranial neural crest cells from the frontonasal prominence of three bird species (chickens, quails, and ducks). Samples for each species were isolated at two developmental stages, before (Hamilton Hamburger stage [HH] 20) and after (HH25) morphological distinctions between the species are evident.
Project description:Avian beaks show extreme species-specific variability in morphology, though they develop from the same primordial structures. In both humans and birds, cranial neural crest cells are the primary source of mesenchyme for the frontonasal prominence; previous work has shown that these cells contain molecular information that regulate species-specific facial variation. To determine the molecular basis of avian craniofacial patterning, we have gene expression profiled micro-dissected cranial neural crest cells from the frontonasal prominence of three bird species (chickens, quails, and ducks) during embryonic development. These changes in gene expression were measured on a custom built, cross-species, long oligonucleotide microarray that interrogates the vast majority of transcription factor (TF) genes plus a wide variety of signaling pathways. Samples were isolated at two developmental stages, before (Hamilton Hamburger stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. Keywords: cross-species comparison Frontonasal mesenchymal cells were micro-dissected two developmental stages, before (Hamilton Hamburger stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. For each sample, mesenchyme from 40 embryos was pooled. For each stage-matched comparison between chicken and quail, experiments include technical replicates as well as dye-switches for a total of 12 microarrays.
Project description:Avian beaks show extreme species-specific variability in morphology, though they develop from the same primordial structures. In both humans and birds, cranial neural crest cells are the primary source of mesenchyme for the frontonasal prominence; previous work has shown that these cells contain molecular information that regulate species-specific facial variation. To determine the molecular basis of avian craniofacial patterning, we have gene expression profiled micro-dissected cranial neural crest cells from the frontonasal prominence of three bird species (chickens, quails, and ducks) during embryonic development. These changes in gene expression were measured on a custom built, cross-species, long oligonucleotide microarray that interrogates the vast majority of transcription factor (TF) genes plus a wide variety of signaling pathways. Samples were isolated at two developmental stages, before (Hamburger Hamilton stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. Keywords: cross-species comparison Frontonasal mesenchymal cells were micro-dissected two developmental stages, before (Hamburger Hamilton stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. For each sample, mesenchyme from 40 embryos was pooled. For each stage-matched comparison between duck and chicken, experiments include technical replicates as well as dye-switches for a total of 14 microarrays.
Project description:Avian beaks show extreme species-specific variability in morphology, though they develop from the same primordial structures. In both humans and birds, cranial neural crest cells are the primary source of mesenchyme for the frontonasal prominence; previous work has shown that these cells contain molecular information that regulate species-specific facial variation. To determine the molecular basis of avian craniofacial patterning, we have gene expression profiled micro-dissected cranial neural crest cells from the frontonasal prominence of three bird species (chickens, quails, and ducks) during embryonic development. These changes in gene expression were measured on a custom built, cross-species, long oligonucleotide microarray that interrogates the vast majority of transcription factor (TF) genes plus a wide variety of signaling pathways. Samples were isolated at two developmental stages, before (Hamburger Hamilton stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. Keywords: cross-species comparison Frontonasal mesenchymal cells were micro-dissected two developmental stages, before (Hamburger Hamilton stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. For each sample, mesenchyme from 40 embryos was pooled. For each stage-matched comparison between duck and quail, experiments include technical replicates as well as dye-switches for a total of 17 microarrays.
Project description:Avian beaks show extreme species-specific variability in morphology, though they develop from the same primordial structures. In both humans and birds, cranial neural crest cells are the primary source of mesenchyme for the frontonasal prominence; previous work has shown that these cells contain molecular information that regulate species-specific facial variation. To determine the molecular basis of avian craniofacial patterning, we have gene expression profiled micro-dissected cranial neural crest cells from the frontonasal prominence of three bird species (chickens, quails, and ducks) during embryonic development. These changes in gene expression were measured on a custom built, cross-species, long oligonucleotide microarray that interrogates the vast majority of transcription factor (TF) genes plus a wide variety of signaling pathways. Samples were isolated at two developmental stages, before (Hamburger Hamilton stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. Keywords: cross-species comparison
Project description:Avian beaks show extreme species-specific variability in morphology, though they develop from the same primordial structures. In both humans and birds, cranial neural crest cells are the primary source of mesenchyme for the frontonasal prominence; previous work has shown that these cells contain molecular information that regulate species-specific facial variation. To determine the molecular basis of avian craniofacial patterning, we have gene expression profiled micro-dissected cranial neural crest cells from the frontonasal prominence of three bird species (chickens, quails, and ducks) during embryonic development. These changes in gene expression were measured on a custom built, cross-species, long oligonucleotide microarray that interrogates the vast majority of transcription factor (TF) genes plus a wide variety of signaling pathways. Samples were isolated at two developmental stages, before (Hamilton Hamburger stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. Keywords: cross-species comparison
Project description:Avian beaks show extreme species-specific variability in morphology, though they develop from the same primordial structures. In both humans and birds, cranial neural crest cells are the primary source of mesenchyme for the frontonasal prominence; previous work has shown that these cells contain molecular information that regulate species-specific facial variation. To determine the molecular basis of avian craniofacial patterning, we have gene expression profiled micro-dissected cranial neural crest cells from the frontonasal prominence of three bird species (chickens, quails, and ducks) during embryonic development. These changes in gene expression were measured on a custom built, cross-species, long oligonucleotide microarray that interrogates the vast majority of transcription factor (TF) genes plus a wide variety of signaling pathways. Samples were isolated at two developmental stages, before (Hamburger Hamilton stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. Keywords: developmental time point comparison Frontonasal mesenchymal cells were micro-dissected two developmental stages, before (Hamburger Hamilton stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. For each sample, mesenchyme from 40 embryos was pooled. For each species, the early stage of development was compared to the later stage. Experiments include technical replicates as well as dye-switches for a total of 4 microarrays per species.
Project description:Avian beaks show extreme species-specific variability in morphology, though they develop from the same primordial structures. In both humans and birds, cranial neural crest cells are the primary source of mesenchyme for the frontonasal prominence; previous work has shown that these cells contain molecular information that regulate species-specific facial variation. To determine the molecular basis of avian craniofacial patterning, we have gene expression profiled micro-dissected cranial neural crest cells from the frontonasal prominence of three bird species (chickens, quails, and ducks) during embryonic development. These changes in gene expression were measured on a custom built, cross-species, long oligonucleotide microarray that interrogates the vast majority of transcription factor (TF) genes plus a wide variety of signaling pathways. Samples were isolated at two developmental stages, before (Hamburger Hamilton stage [HH] 20) and after (HH25) morphological distinctions between the species are evident. Keywords: developmental time point comparison
Project description:During craniofacial development, different populations of cartilage and bone forming cells develop in precise locations in the head. Most of these cells are derived from pluripotent cranial neural crest cells. The mechanisms that divide neural crest cells into distinct populations are not fully understood. Here we use single-cell RNA sequencing to transcriptomically define different populations of cranial neural crest cells. We discovered that the transcription factor encoding alx gene family is restricted to the frontonasal population of neural crest cells. Furthermore, genetic mutant analyses indicate that alx3 functions to subdivide the frontonasal population into medial versus lateral subpopulations. Our results support a mechanism in which the alx gene family functions as an identity code, subdividing frontonasal neural crest cells into distinct subpopulations. This study furthers our understanding of how different skeletal cell fates are established during craniofacial development and how these mechanisms can go awry in genetic diseases.