Transcriptomics

Dataset Information

0

Integrating single-cell transcriptomic data across different conditions, technologies, and species


ABSTRACT: Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple datasets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq datasets based on common sources of variation, enabling the identification of shared populations across datasets and downstream comparative analysis. Implemented in our R toolkit Seurat (http://satijalab.org/seurat/), we use our approach to align scRNA-seq datasets of peripheral blood monocytes (PBMCs) under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell ‘atlases’ generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across datasets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq datasets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

ORGANISM(S): Homo sapiens

PROVIDER: GSE110513 | GEO | 2018/04/02

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2021-12-06 | GSE167989 | GEO
2022-07-05 | GSE205745 | GEO
2021-05-07 | PXD018230 | Pride
2024-07-13 | E-MTAB-14214 | biostudies-arrayexpress
2021-11-16 | GSE185849 | GEO
2023-09-05 | PXD045115 | Pride
| PRJNA1135479 | ENA
2020-10-14 | E-MTAB-9317 | biostudies-arrayexpress
2021-09-09 | PXD020515 | Pride
2020-10-14 | E-MTAB-9403 | biostudies-arrayexpress