AAV9 mediated overexpression of Rbm24 in wildtype C57/Bl6 mice
Ontology highlight
ABSTRACT: The RNA-binding protein Rbm24 has recently been identified as a pivotal splicing factor in the developing heart. Loss of Rbm24 in mice disrupts cardiac development by governing a large number of muscle- specific splicing events. Since Rbm24 knockout mice are embryonically lethal, the role of Rbm24 in the adult heart remained unexplored. Here, we used adeno-associated viruses (AAV9) to investigate the effect of increased Rbm24 levels in adult mouse heart. Using high-resolution microarrays, we found 893 differentially expressed genes and 1102 differential splicing events in 714 genes in hearts overexpressing Rbm24. We found splicing differences in cardiac genes, such as PDZ and Lim domain 5, Phospholamban, and Titin, but did not find splicing differences in previously identified embryonic splicing targets of Rbm24, such as skNAC, αNAC, and Coro6. Gene ontology enrichment analysis demonstrated increased expression of extracellular matrix (ECM)-related and immune response genes. Moreover, we found increased expression of Tgfβ-signaling genes, suggesting enhanced Tgfβ-signaling in these hearts. Ultimately, this increased activation of cardiac fibroblasts, as evidenced by robust expression of Periostin in the heart, and extensive cardiac fibrosis. These results indicate that Rbm24 may function as a regulator of cardiac fibrosis, potentially through the regulation of TgfβR1 and TgfβR2 expression.
Project description:A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA binding protein Rbm24 is a major regulator of muscle specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protein. We built linear models using 2 different experiments and two conditions (miR222 over expression (n=1) and control siRNA(n=2)) with the linear formula (~condition + experiment).
Project description:Cardiac hypertrophy has been well-characterized at the level of transcription. During cardiac hypertrophy, genes normally expressed primarily during fetal heart development are re-expressed, and this fetal gene program is believed to be a critical component of the hypertrophic process. Recently, alternative splicing of mRNA transcripts has been shown to be temporally regulated during heart development, leading us to consider whether fetal patterns of splicing also reappear during hypertrophy.We hypothesized that patterns of alternative splicing occurring during heart development are recapitulated during cardiac hypertrophy. Here we present a whole-transcriptome study of isoform expression during pressure-overload cardiac hypertrophy induced by 10 days of transverse aortic constriction (TAC) in rats and in developing fetal rat hearts compared to sham-operated adult rat hearts, using high-throughput sequencing of poly(A) tail mRNA. Quantification of isoform expression in fetal rat hearts, pressure-overloaded rat hearts, and sham-operated rat hearts by Illumina GAIIx in triplicate
Project description:A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA binding protein Rbm24 is a major regulator of muscle specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protein.
Project description:Cardiac hypertrophy has been well-characterized at the level of transcription. During cardiac hypertrophy, genes normally expressed primarily during fetal heart development are re-expressed, and this fetal gene program is believed to be a critical component of the hypertrophic process. Recently, alternative splicing of mRNA transcripts has been shown to be temporally regulated during heart development, leading us to consider whether fetal patterns of splicing also reappear during hypertrophy.We hypothesized that patterns of alternative splicing occurring during heart development are recapitulated during cardiac hypertrophy. Here we present a whole-transcriptome study of isoform expression during pressure-overload cardiac hypertrophy induced by 10 days of transverse aortic constriction (TAC) in rats and in developing fetal rat hearts compared to sham-operated adult rat hearts, using high-throughput sequencing of poly(A) tail mRNA.
Project description:Background: Modulation of mRNA splicing acts as an important layer of gene regulation, in addition to transcriptional regulation and epigenetic modifications. RNA binding proteins (RBPs) play essential roles in mediating RNA splicing and are key regulators of heart development and function. Our previous studies demonstrated that RBPMS (RNA-binding protein with multiple splicing) regulates cardiac development through modulating mRNA splicing during embryogenesis. Here we explored the postnatal function of RBPMS in the heart. Methods: We ablated Rbpms in the heart by generating a cardiac-specific knockout mouse line (Myh6-Cre, Rbpmsfl/fl), and evaluated its cardiac functions by histology, echocardiography, and gene expression. Paired-end RNA sequencing and RT-PCR were performed to identify and validate splicing targets of RBPMS in adult mouse hearts. Proximity-dependent Biotin Identification (BioID) assay and mass spectrometry analysis were performed to identify RBPMS binding partners. We also measured contractility and calcium fluxes in isolated mouse cardiomyocytes, and contractile forces of cardiac papillary muscle. Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) were also used as a model to explore the influence of RBPMS on contractility of human cardiomyocytes. Results: he absence of Rbpms in the heart led to dilated cardiomyopathy (DCM) and heart failure, causing early death in mice. Mice with cardiac-specific knockout of Rbpms showed myocardium noncompaction with reduced cardiomyocyte number at the neonatal stage and developed DCM with pervasive myocardial fibrosis in adulthood. We found that RBPMS mediates a largely distinct RNA splicing profile in adult mouse hearts compared to neonatal hearts, indicating a stage-specific modulation of alternative RNA splicing by RBPMS. In adult hearts, RBPMS mainly influenced alternative splicing of genes associated with sarcomere structures and cardiomyocyte contraction, such as Ttn, Pdlim5 and Nexn, to generate new protein isoforms. In neonatal hearts, RBPMS influenced the splicing of cytoskeletal genes. RBMPS was associated with spliceosome factors and other RNA binding proteins that play important roles in the heart, such as RBM20 and GATA4. Importantly, we found that the absence of Rbpms caused severe cardiomyocyte contractile defects and reduced calcium sensitivity in both mouse and hiPSC-CMs. Our results demonstrated that Rbpms is crucial for postnatal cardiac function and cardiomyocyte contractility by regulating RNA alternative splicing. Conclusions: Loss of Rbpms in the heart causes reduced cardiomyocyte number and impaired cardiomyocyte contraction, leading to DCM and heart failure.
Project description:To identify a novel target for the treatment of heart failure, we examined gene expression in the failing heart. Among the genes analyzed, 12/15 lipoxygenase (12/15-LOX) was markedly up-regulated in heart failure. To determine whether increased expression of 12/15-LOX causes heart failure, we established transgenic mice that overexpressed 12/15-LOX in cardiomyocytes. Echocardiography showed that 12/15-LOX transgenic mice developed systolic dysfunction. Cardiac fibrosis increased in 12/15-LOX transgenic mice with advancing age, and was associated with the infiltration of macrophages. Consistent with these observations, cardiac expression of monocyte chemoattractant protein-1 (Mcp-1) was up-regulated in 12/15-LOX transgenic mice compared with wild-type mice. Treatment with 12-hydroxy-eicosatetraenotic acid, a major metabolite of 12/15-LOX, increased MCP-1 expression in cardiac fibroblasts and endothelial cells, but not in cardiomyocytes. Inhibition of Mcp-1 reduced the infiltration of macrophages into the myocardium and prevented both systolic dysfunction and cardiac fibrosis in 12/15-LOX transgenic mice. Likewise, disruption of 12/15-LOX significantly reduced cardiac Mcp-1 expression and macrophage infiltration, thereby improving systolic dysfunction induced by chronic pressure overload. Our results suggest that cardiac 12/15-LOX is involved in the development of heart failure and that inhibition of 12/15-LOX could be a novel treatment for this condition. Heart failure is still one of the leading causes of death worldwide. Therefore, it is important to elucidate the underlying mechanisms of heart failure and develop more effective treatments for this condition. To clarify the molecular mechanisms of heart failure, we performed microarray analysis using cardiac tissue samples obtained from a hypertensive heart failure model (Dahl salt-sensitive rats). ~300 genes showed significant changes of expression in the failing hearts compared with control hearts. Among the genes analyzed, 12/15-lipoxygenase (12/15-LOX) was most markedly up-regulated in failing hearts compared with control hearts .
Project description:Regulation of gene expression plays a fundamental role in cardiac stress-responses. Modification of coding transcripts by adenosine methylation (m6A) has recently emerged as a critical post-transcriptional mechanism underlying heart disease. Thousands of mammalian mRNAs are known to be m6A-modified, suggesting that remodeling of the m6A landscape may play an important role in cardiac pathophysiology. Here we found an increase in m6A content in human heart failure samples. We then adopted genome-wide analysis to define all m6A-regulated sites in human failing compared to non-failing hearts and identified targeted transcripts involved in histone modification as enriched in heart failure. Further, we compared all m6A sites regulated in human hearts with the ones occurring in isolated rat hypertrophic cardiomyocytes to define cardiomyocyte-specific m6A events conserved across species. Our results identified 38 shared transcripts targeted by m6A during stress conditions, and 11 events that are unique to unstressed cardiomyocytes. Of these, Coronin-6 (CORO6) was further evaluated for mRNA and protein abundances, demonstrating the potential impact of m6A on post-transcriptional regulation of gene expression in the heart.
Project description:Background: Heart failure involves metabolic alterations including increased glycolysis despite unchanged or decreased glucose oxidation. The mitochondrial pyruvate carrier (MPC) regulates pyruvate entry into the mitochondrial matrix, and cardiac deletion of the MPC in mice causes heart failure. How MPC deletion results in heart failure is unknown. Methods: We performed targeted metabolomics and isotope tracing in wildtype (fl/fl) and cardiac-specific Mpc2-/- (CS-Mpc2-/-) hearts after in vivo injection of 13C-glucose. Cardiac glycogen was measured biochemically and by transmission electron microscopy. Cardiac glucose uptake of 2-deoxyglucose was measured and western blotting performed to analyze insulin signaling and enzymatic regulators of glycogen synthesis and degradation. Isotope tracing and glycogen analysis was also performed in hearts from mice fed either low-fat diet or a ketogenic diet previously shown to reverse the heart failure in CS-Mpc2-/- mice. Cardiac glycogen was also assessed in mice infused with angiotensin-II that were fed either low-fat or ketogenic diet. Results: Failing CS-Mpc2-/- hearts contained normal levels of ATP and phosphocreatine, suggesting their heart failure is not caused by energetic stress. These hearts displayed increased enrichment from 13C-glucose and increased glycolytic metabolite pool sizes. 13C enrichment and pool size was also increased for the glycogen intermediate UDP-glucose, as well as increased enrichment of the glycogen pool. Glycogen levels were increased ~6-fold in the failing CS-Mpc2-/- hearts, and glycogen granules were easily detected by electron microscopy. This increased glycogen synthesis occurred despite enhanced inhibitory phosphorylation of glycogen synthase and reduced expression of the priming enzyme glycogenin-1. In young, non-failing CS-Mpc2-/- hearts, increased glycolytic 13C enrichment occurred, but glycogen levels remained low and unchanged compared to fl/fl hearts. Feeding a ketogenic diet to CS-Mpc2-/- mice reversed the heart failure and normalized the cardiac glycogen and glycolytic metabolite accumulation. Cardiac glycogen levels were also elevated in mice infused with angiotensin II, and both the cardiac hypertrophy and glycogen levels were improved by ketogenic diet. Conclusions: Our results indicate that loss of MPC in the heart increases glycolytic metabolism and ultimately glycogen accumulation and heart failure, while a ketogenic diet can reverse both the glycogen accumulation and heart failure. We conclude that maintaining mitochondrial pyruvate import and metabolism is critical for the heart, unless cardiac pyruvate metabolism is dramatically reduced by consumption of a ketogenic diet.
Project description:We ablated RBM24 from human embryonic stem cells (hESCs) using CRISPR/Cas9 techniques. Although RBM24-/- hESCs still differentiated into sarcomere-hosting cardiomyocytes, they exhibited disrupted sarcomeric structures with punctate Z-lines due to impaired myosin replacement during early myofibrillogenesis. Transcriptomics revealed >4000 genes regulated by RBM24. Among them, core myofibrillogenesis proteins (e.g. ACTN2, TTN, and MYH10) were misspliced. Consequently, MYH6 cannot replace non-muscle myosin MYH10, leading to myofibrillogenesis arrest at the early premyofibril stage and causing disrupted sarcomeres. Intriguingly, we found that the actin-binding domain (ABD; encoded by exon 6) of the Z-line anchor protein ACTN2 is predominantly excluded from early cardiac differentiation, whereas it is consistently included in human adult heart. CRISPR/Cas9-mediated deletion of exon 6 from ACTN2 in hESCs, as well as forced expression of full-length ACTN2 in RBM24-/- hESCs, further corroborated that inclusion of exon 6 is critical for sarcomere assembly. Overall, we have demonstrated that RBM24-facilitated inclusion of exon 6 in ACTN2 at distinct stages of cardiac differentiation is evolutionarily conserved and crucial to sarcomere assembly and integrity.
Project description:Dilated cardiomyopathy (DCM) is a major risk factor for developing heart failure and is often associated with an increased risk for life-threatening arrhythmia. Although numerous causal genes for DCM have been identified, RNA binding motif 20 (RBM20) remains one of the few splicing factors that, when mutated or genetically ablated, leads to the development of DCM. In this study we sought to identify changes in the cardiac proteome in RBM20 deficient rat hearts using global quantitative proteomics to gain insight into the molecular mechanisms precipitating the development of DCM secondary to RBM20 loss. Our analysis identified changes in titin interacting proteins, as well as mitochondrial enzymes, implicating activation of pathological hypertrophy and mitochondrial dysfunction in DCM development in RBM20 deficient rats. Collectively, our findings provide the first look into changes in the cardiac proteome associated with genetic ablation of RBM20.