Project description:Cis-regulatory evolution is an important engine of organismal diversification. Although recent studies have looked at genomic patterns of regulatory evolution between species, we still have a poor understanding of the magnitude and nature of regulatory variation within species. Here, we examine the evolution of regulatory element activity over wing development in three Heliconius erato butterfly populations to determine how regulatory variation is associated with population structure. We show that intraspecific divergence in chromatin accessibility and regulatory activity is abundant, and that regulatory variants are spatially clustered in the genome. Regions with strong population structure are highly enriched for regulatory variants, and enrichment patterns are associated with developmental stage and gene expression. We also found that variable regulatory elements are particularly enriched in species-specific genomic regions and long interspersed nuclear elements. Our findings suggest that genome-wide selection on chromatin accessibility and regulatory activity is an important force driving patterns of genomic divergence within Heliconius species. This work also provides a resource for the study of gene regulatory evolution in H. erato and other heliconiine butterflies.
Project description:We test the hypothesis that intraspecific genomic divergence is linked to regulatory variation between Heliconius butterfly populations. We show that population-level divergence in chromatin accessibility and regulatory activity during wing development is abundant, and that differences in regulatory activity between populations are strongly associated with developmental stage. Genomic regions with high Fst are highly enriched for regulatory variants, and enrichment patterns vary significantly across development. Regulatory variants are associated with most differential gene expression between populations, and our data point to two roles for histone modifications in the evolution of gene expression.
Project description:We test the hypothesis that intraspecific genomic divergence is linked to regulatory variation between Heliconius butterfly populations. We show that population-level divergence in chromatin accessibility and regulatory activity during wing development is abundant, and that differences in regulatory activity between populations are strongly associated with developmental stage. Genomic regions with high Fst are highly enriched for regulatory variants, and enrichment patterns vary significantly across development. Regulatory variants are associated with most differential gene expression between populations, and our data point to two roles for histone modifications in the evolution of gene expression.
Project description:We test the hypothesis that intraspecific genomic divergence is linked to regulatory variation between Heliconius butterfly populations. We show that population-level divergence in chromatin accessibility and regulatory activity during wing development is abundant, and that differences in regulatory activity between populations are strongly associated with developmental stage. Genomic regions with high Fst are highly enriched for regulatory variants, and enrichment patterns vary significantly across development. Regulatory variants are associated with most differential gene expression between populations, and our data point to two roles for histone modifications in the evolution of gene expression.
Project description:Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.
Project description:Genetic studies of human local adaptation have been facilitated greatly by recent advances in high-throughput genotyping and sequencing technologies. However, few studies have investigated local adaptation in Asian populations on a genome-wide scale and with a high geographic resolution. In this study, taking advantage of the dense population coverage in Southeast Asia, which is the part of the world least studied in term of natural selection, we depicted genome-wide landscapes of local adaptations in 63 Asian populations representing the majority of linguistic and ethnic groups in Asia. Using genome-wide data analysis, we discovered many genes showing signs of local adaptation or natural selection. Notable examples, such as FOXQ1, MAST2, and CDH4, were found to play a role in hair follicle development and human cancer, signal transduction, and tumor repression, respectively. These showed strong indications of natural selection in Philippine Negritos, a group of aboriginal hunter-gatherers living in the Philippines. MTTP, which has associations with metabolic syndrome, body mass index, and insulin regulation, showed a strong signature of selection in Southeast Asians, including Indonesians. Functional annotation analysis revealed that genes and genetic variants underlying natural selections were generally enriched in the functional category of alternative splicing. Specifically, many genes showing significant difference with respect to allele frequency between northern and southern Asian populations were found to be associated with human height and growth and various immune pathways. In summary, this study contributes to the overall understanding of human local adaptation in Asia and has identified both known and novel signatures of natural selection in the human genome.