Project description:Familial Mediterranean fever (FMF) is an inflammatory genetic disease characterized by elevated systemic reactivity against commensal gut microbiota and high levels of gut Candida albicans. The current study investigated the effects of Lactobacillus acidophillus INMIA 9602 Er 317/402 strain (probiotic “Narine”) on the relative abundance of gut enteric bacteria, lactobacilli, Staphylococcus aureus, and Enteroccocus faecalis in Candida albicans-carrier and non-carrier FMF patients in remission with the main MEFV mutation patterns M694V/V726A- the prevalent MEFV gene mutation within FMF patients in the Armenian cohort. Our data revealed that M694V/V726A mutations in PURIN inflammasome leading to FMF disease brought to gender specific differences in microbial community structure in FMF patients. Possibly, long-term colchicine use suppresses the PURIN inflammasome/inhibits NLRP3 inflammasome-dependent IL-1β release influencing on overgrowth of C. albicans in gut microbiota of FMF patients. The comparison of Operational Taxonomic Units (OTUs) of enteric bacteria in C. albicans-carrier and non-carrier female patients revealed the statistically significant increase in OTUs of enterobacteria in C. albicans-carriers. In contrast to this, there were no differences in abundance of Enteroccocus faecalis between female FMF C. albicans-carriers compared with non-carriers, while male FMF C. albicans-carriers have increased abundance of E. faecalis in their gut microbiota compared with that of male patients with none carriers. The gut microbiota of FMF patients (both male and female) with C. albicans below baseline level contains high abundance of lactobacilli compared with C. albicans-carriers. The adoption of Lactobacillus acidophilus INMIA 9602 Er 317/402 leads to changes in gut microbiota composition of FMF patients. It reduces, in particularly, the abundance of enterobacteria in females, and Enteroccocus faecalis in men parallel with reducing the numbers of yeast in gut microbiota of FMF patients. We hypothesize that colchicine treatment changes the already-altered gut microbiota of FMF patients, thereby affecting the regulation of immune system by inhibition of NLRP3 inflammasome. Colchicine could lead to overgrowth of C. albicans in gut microbiota of FMF patients, whereas the Lactobacillus acidophilus INMIA 9602 Er 317/402 works on activation of inflammasome by new changes in gut microbiota of patients.
Project description:We knocked down the Mediterranean fever (MEFV) gene by RNA interference (siRNA) in human myelomonocytic cells that express endogenous pyrin, aiming to identify microRNAs (miRNAs) that are differentially expressed in siMEFV treated cells. The purpose of this study was to better understand the pathophysiology of FMF, through the identification of novel miRNAs involved in the regulation of MEFV.
Project description:ObjectivesAlthough Familial Mediterranean fever (FMF) is categorized as autosomal recessive, frequent exceptions to this model exist and therefore we aimed to search epigenetic modifications in this disease.MethodsTen M694V homozygous FMF patients (the most severe phenotype) were recruited for this study. Patients with inflammatory flare were excluded. Total RNA was extracted from peripheral blood, and microRNA expression profiled using NanoString nCounter technology. These patients were compared to 10 healthy age- and sex-matched controls.ResultsSeven hundred nighty-eight mature human miRNAs were probed, 103 of which had expression levels above the negative control probes. Seven miRNAs showed significant differences in expression in samples from FMF patients compared to healthy controls: four miRNAs were upregulated (miR-144-3p, miR-21-5p, miR-4454, and miR-451a), and three were downregulated (miR-107, let-7d-5p, and miR-148b-3p).ConclusionIn this pilot study, we identified epigenetic modifications in clinically quiescent FMF patients. More studies are required for exploration of their contribution to FMF pathogenesis and their potential role as clinical biomarkers.
Project description:Our data suggest that serum miR-204-3p has a potential as a useful biomarker among patients with FMF and that miR-204-3p plays a critical role as a suppressor to regulate the production of TLR4-related cytokines by targeting PI3K signaling pathway.
Project description:Objective. Colchicine is an alkaloid that is used to alleviate acute gout and to prevent acute attacks of familial Mediterranean fever (FMF). However, it is not beneficial when given during the occurrence of an acute episode of FMF. It is believed that colchicine exerts its anti-inflammatory effect through direct interaction with microtubules. We aim to study the molecular basis of colchicine action by analysing the effect of this drug on global gene expression of HUVEC (human umbilical vein endothelial cell line) cells. Methods. HUVEC cells were exposed to various concentrations of colchicine and were harvested at different time points. Ribonucleic acid was extracted, amplified, reverse transcribed and hybridized to complementary deoxyribonucleic acid microarrrays containing more than 40,000 probes to human expressed sequence tags. This approach enabled us to have a global look at the transcriptional response induced by colchicine treatment. Results. Colchicine changed the expression of many genes in HUVEC cells following exposure to a concentration of 100 ng/ml or higher. Following short exposure (30 or 120 min), colchicine affected genes known to be involved in the cell cycle and its regulation. However, change in expression of genes involved in neutrophil migration or other inflammatory processes were observed mainly after 12 to 24 h. Conclusions. The anti-inflammatory effect of colchicine may be mediated not only through direct interaction with microtubules but also through changes at the transcriptional level. This latter effect apparently requires a higher concentration and a longer time to occur. This can explain the observation that colchicine does not have an immediate effect when given during an acute attack of FMF.
Project description:Familial Mediterranean fever (FMF, MIM 249100) is an autosomal recessive disease affecting mainly patients of the Mediterranean basin. It is an autoinflammatory periodic disorder characterized by recurrent episodes of fever and abdominal pain, synovitis, and pleuritis. The major complication of FMF is the development of renal AA amyloidosis. Treatment with colchicine prevents the occurrence of recurrent seizures and renal amyloidosis. The disease is caused by mutations in the MEFV gene. We report here the cases of two unrelated patients, who have been late diagnosed with FMF complicated by renal amyloidosis. We focus on the importance of early diagnosis of FMF, both to start rapidly treatment with colchicine and avoid renal amyloidosis, and to provide genetic counseling to families.
Project description:Familial Mediterranean Fever (FMF) and COVID-19 show a remarkable overlap of clinical symptoms and similar laboratory findings. Both are characterized by fever, abdominal/chest pain, elevation of C-reactive protein, and leukocytosis. In addition, colchicine and IL-1 inhibitors treatments that are effective in controlling inflammation in FMF patients have recently been proposed for off-label use in COVID-19 patients. Thus, FMF may resemble a milder recapitulation of the cytokine storm that is a hallmark of COVID-19 patients progressing to severe disease. We analyzed the sequence of the MEFV-encoded Pyrin protein - whose mutations cause FMF- in mammals, bats and pangolin. Intriguingly, although Pyrin is extremely conserved in species that are considered either a reservoir or intermediate hosts for SARS-CoV-2, some of the most common FMF-causing variants in humans are present as wildtype residues in these species. We propose that in humans, Pyrin may have evolved to fight highly pathogenic infections.