Oligogenic inheritance of congenital heart disease involving a NKX2-5 modifier [mouse]
Ontology highlight
ABSTRACT: Complex genetic inheritance is thought to underlie many human diseases, yet experimental proof of this model has been elusive. Here, we show that a human congenital heart defect, left ventricular non-compaction (LVNC), can be caused by a combination of rare, inherited heterozygous missense single nucleotide variants. Whole exome sequencing of a nuclear family revealed novel single nucleotide variants of MYH7 and MKL2 in an asymptomatic father while the offspring with severe childhood-onset LVNC harbored an additional missense variant in the cardiac transcription factor, NKX2-5, inherited from an unaffected mother. Mice bred to compound heterozygosity for the orthologous missense variants in Myh7 and Mkl2 had mild cardiac pathology; the additional inheritance of the Nkx2-5 variant yielded a more severe LVNC-like phenotype in triple compound heterozygotes. RNA sequencing identified genes associated with endothelial and myocardial development that were dysregulated in hearts from triple heterozygote mice and human induced pluripotent stem cell–derived cardiomyocytes harboring the three variants, with evidence for NKX2-5’s contribution as a modifier on the molecular level. These studies demonstrate that the deployment of efficient gene editing tools can provide experimental evidence for complex inheritance of human disease.
ORGANISM(S): Mus musculus
PROVIDER: GSE111394 | GEO | 2019/05/31
REPOSITORIES: GEO
ACCESS DATA