H2A.Z is dispensable for both basal and activated transcription in post-mitotic mouse muscles
Ontology highlight
ABSTRACT: While the histone variant H2A.Z is known to be required for mitosis, it is also enriched in nucleosomes surrounding the transcription start site of active promoters, implicating H2A.Z in transcription. However, evidence obtained so far mainly rely on correlational data generated in actively dividing cells. We have exploited a paradigm in which transcription is uncoupled from the cell cycle by developing an in vivo system to inactivate H2A.Z in terminally differentiated post-mitotic muscle cells. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is a marker but not an active driver of transcription.
Project description:While the histone variant H2A.Z is known to be required for mitosis, it is also enriched in nucleosomes surrounding the transcription start site of active promoters, implicating H2A.Z in transcription. However, evidence obtained so far mainly rely on correlational data generated in actively dividing cells. We have exploited a paradigm in which transcription is uncoupled from the cell cycle by developing an in vivo system to inactivate H2A.Z in terminally differentiated post-mitotic muscle cells. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is a marker but not an active driver of transcription.
Project description:The histone variant H2A.Z is enriched in nucleosomes surrounding the transcription start site of active promoters, suggesting that it might be implicated in transcription. It is also required during mitosis. However, evidences obtained so far mainly rely on correlative evidences obtained in actively dividing cells. We have defined a paradigm in which cell cycle cannot interfere with H2A.Z transcriptional studies by developing an in vivo systems to invalidate H2A.Z in terminally differentiated post-mitotic muscle cells to dissociate its role during transcription from its role during mitosis. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is rather a marker than an actor of transcriptional activity.
Project description:The histone variant H2A.Z is enriched in nucleosomes surrounding the transcription start site of active promoters, suggesting that it might be implicated in transcription. It is also required during mitosis. However, evidences obtained so far mainly rely on correlative evidences obtained in actively dividing cells. We have defined a paradigm in which cell cycle cannot interfere with H2A.Z transcriptional studies by developing an in vivo systems to invalidate H2A.Z in terminally differentiated post-mitotic muscle cells to dissociate its role during transcription from its role during mitosis. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is rather a marker than an actor of transcriptional activity.
Project description:We report genome wide mapping of the histone variant H2A.Z during G0/G1 and mitosis in T24 bladder cancer cells. The results show that the broad enrichment pattern of H2A.Z near transcription start sites of active genes is maintained during mitosis. Furthermore, using H2A.Z localization to visualize nucleosome positioning near the start site, we see that the +1 nucleosome of active genes shifts upstream to occupy the transcription start sites during mitosis and the nucleosome depleted region is shortened. H2A.Z is also maintained on the -2 nucleosome which also shifts towrds the transcription start site during mitosis, further contributing to the shorteneing of the nucleosome depleted region. Examination of H2A.Z duing G0/G1 and mitosis in bladder cancer cells
Project description:We report genome wide mapping of the histone variant H2A.Z during G0/G1 and mitosis in T24 bladder cancer cells. The results show that the broad enrichment pattern of H2A.Z near transcription start sites of active genes is maintained during mitosis. Furthermore, using H2A.Z localization to visualize nucleosome positioning near the start site, we see that the +1 nucleosome of active genes shifts upstream to occupy the transcription start sites during mitosis and the nucleosome depleted region is shortened. H2A.Z is also maintained on the -2 nucleosome which also shifts towrds the transcription start site during mitosis, further contributing to the shorteneing of the nucleosome depleted region.
Project description:The histone variant H2A.Z has been implicated in nucleosome exchange, transcriptional activation and Polycomb repression. However, the relationships among these seemingly disparate functions remain obscure. We mapped H2A.Z genome-wide in mammalian ES cells and neural progenitors. H2A.Z is deposited promiscuously at promoters and enhancers, and correlates strongly with H3K4 methylation. Accordingly, H2A.Z is present at poised promoters with bivalent chromatin and at active promoters with H3K4 methylation, but is absent from stably repressed promoters that are specifically enriched for H3K27 trimethylation. We also characterized post-translational modification states of H2A.Z, including a novel species dually-modified by ubiquitination and acetylation that is enriched at bivalent chromatin. Our findings associate H2A.Z with functionally distinct genomic elements, and suggest that post-translational modifications may reconcile its contrasting locations and roles. Examination of histone variant, histone modifications and transcription machinery in 3 cell types
Project description:Mixed Lineage Leukemia (MLL) and its metazoan Trithorax orthologs have been linked with the epigenetic maintenance of transcriptional activity. To identify mechanisms by which MLL perpetuates active transcription in dividing cells, we investigated its role during M-phase of the cell cycle. Unlike other chromatin modifying enzymes examined, we found that MLL associates with gene promoters packaged within condensed mitotic chromosomes. Genome-wide location analysis identified a globally rearranged pattern of MLL occupancy during mitosis in a manner favoring genes that were highly transcribed during interphase. Knockdown experiments revealed that MLL retention at gene promoters during mitosis accelerates transcription reactivation following mitotic exit. MLL tethers Menin, RbBP5, and ASH2L to its occupied sites during mitosis, but is dispensable for preserving histone H3K4 methylation. These findings implicate mitotic bookmarking as a component of Trithorax-based gene regulation which may facilitate inheritance of active gene expression states during cell division. anti-MLL ChIP (antibody 456) and anti-pol2 chip (sc-899) in chromatin prepared from interphase and mitotic HeLa cells
Project description:While it has been clearly established that well positioned H2A.Z-containing nucleosomes flank the nucleosome depleted region (NDR) at the transcriptional start site (TSS) of active mammalian genes, how this chromatin-based information is transmitted through the cell cycle is unknown. We show here that in trophoblast stem (TS) cells, the level of H2A.Z at promoters decreases during S phase coinciding with homotypic (H2A.Z/H2A.Z) nucleosomes flanking the TSS becoming heterotypic (H2A.Z/H2A). Surprisingly, these nucleosomes remain heterotypic at M phase. At the TSS, we identify an unstable heterotypic H2A.Z-containing nucleosome in G1 which, strikingly, is lost following DNA replication. These dynamic changes in H2A.Z at the TSS mirror a global expansion of the NDR at S and M which, unexpectedly, is unrelated to transcriptional activity. Coincident with the loss of H2A.Z at promoters, it is targeted to the centromere when mitosis begins We performed ChIP-Seq experiments (on mouse Trophoblast Stem cells arrested at G1; S and M stages of thecell cycle) using antibodies against histone variant H2A.Z and sequentional ChIP-re-ChIP-Seq experiments using H2A.Z antibody and H2A antibody in sequence. Combining those data sets with microarray gene expression expression data allowed us to see H2A.Z distribution over promoters of mouse coding genes in cell cycle dependant manner. Interestingly, Input also showed cell-cycle dependent effects, but histone H3 could be used as a cell-cycle independent normalisation factor. We also performed ChIP-seq with a CTCF pull-down to investigate its cell-cycle dependent relationship with heterochromatin.
Project description:Surface LE, Fields PA, Subramanian V, Behmer R, Udeshi N, Peach SE, Jaffe JD, Boyer LA. Cell Reports. 2015. Histone variant H2A.Z occupies the promoters of active and poised, bivalent genes in ESCs to regulate developmental programs, yet how it contributes to these contrasting states is poorly understood. Here, we investigate the function of H2A.Z.1 mono-ubiquitylation (H2A.Z.1ub) by mutation of the PRC1 target residues (H2A.Z.1K3R3). We show that H2A.Z.1K3R3 is properly incorporated at target promoters in murine ESCs (mESCs), however, loss of mono- ubiquitylation leads to de-repression of bivalent genes, loss of Polycomb binding, and to faulty lineage commitment. Using quantitative proteomics, we find that tandem bromodomain proteins, including the BET family member Brd2, are enriched in H2A.Z.1 chromatin. We further show that Brd2 is gained at de-repressed promoters in H2A.Z.1K3R3 mESCs whereas Brd2 inhibition restores gene silencing at these sites. Together, our study reveals an antagonistic relationship between H2A.Z.1ub and Brd2 to regulate the transcriptional balance at bivalent genes to enable proper execution of developmental programs.
Project description:Specialized chromatin-binding proteins are required for DNA-based processes during development. We recently established PWWP2A as a direct histone variant H2A.Z interactor involved in mitosis and craniofacial development. Here, we identify the H2A.Z/PWWP2A-associated protein HMG20A as part of several chromatin-modifying complexes, including NuRD, andshow that it localizes to distinct genomic regulatory regions. Hmg20a depletion causes severe head and heart developmental defects in Xenopus laevis. Our data indicate that craniofacial malformations are caused by defects in neural crest cell (NCC) migration and cartilage formation. These developmental failures are phenocopied in Hmg20a-depleted mESCs, which show inefficient differentiation into NCCs and cardiomyocytes (CM). Consequently, loss of HMG20A, which marks open promoters and enhancers, results in chromatin accessibility changes and a striking deregulation of transcription programs involved in epithelial-mesenchymal transition (EMT) and differentiation processes. Collectively, our findings implicate HMG20A as part of the H2A.Z/PWWP2A/NuRD-axis and reveal it as a key modulator of intricate developmental transcription programs that guide the differentiation of NCCs and CMs.