DNA methylation in neurons from post-mortem brains in schizophrenia and bipolar disorder (Methylation)
Ontology highlight
ABSTRACT: We fine-mapped DNA methylation in neuronal nuclei (NeuN+) isolated by flow cytometry from post-mortem frontal cortex of the brain of individuals diagnosed with schizophrenia, bipolar disorder, and controls (n=29, 26, and 28 individuals).
Project description:We fine-mapped DNA methylation in neuronal nuclei (NeuN+) isolated by flow cytometry from post-mortem frontal cortex of the brain of individuals diagnosed with schizophrenia, bipolar disorder, and controls (n=29, 26, and 27 individuals).
Project description:We fine-mapped DNA methylation in neuronal nuclei (NeuN+) isolated by flow cytometry from post-mortem frontal cortex of the brain of individuals diagnosed with schizophrenia, bipolar disorder, and controls (n=29, 26, and 28 individuals).
Project description:Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (orbitofrontal cortex) from patients with bipolar disorder and matched healthy controls. Orbitofrontal cortex tissue from a cohort of 30 subjects was investigated and the final analysis included 10 bipolar and 11 control subjects. Differences between disease and control groups were identified using a rigorous statistical analysis with correction for confounding variables and multiple testing.
Project description:Schizophrenia (SZ) and bipolar disorder (BD) are severe psychiatric conditions, with a lifetime prevalence of about 1%. Both disorders have a neurodevelopment component, with onset of symptoms occurring most frequently during late adolescence or early adulthood. Genetic findings indicate the existence of an overlap in genetic susceptibility across the disorders. These gene expression profiles were used to identify the molecular mechanisms that differentiate SZ and BP from healthy controls but also that distinguish both from healthy individuals. They were also used to expand an analysis from an experiment that searched molecular alterations in human induced pluripotent stem cells derived from fibroblasts from control subject and individual with schizophrenia and further differentiated to neuron to identify genes relevant for the development of schizophrenia (GSE62105). Brain tissue (frontal cortex) from 30 healthy controls, 29 bipolar disorder patients and 29 schizophrenia patients were analyzed. The reference is an in-house pool of RNA extracted from 15 human cell lines.
Project description:We fine-mapped DNA methylation in neuronal nuclei (NeuN+) isolated by flow cytometry from post-mortem frontal cortex of the brain of individuals diagnosed with schizophrenia, bipolar disorder, and controls (n=29, 26, and 28 individuals). These genotype arrays were generated in the same samples to identify genetic-epigenetic interactions.