Project description:The marine bacterium Rhodococcus erythropolis PR4 was demonstrated to be able for assimilation/biodegradation of hydrocarbons. Not just the chromosome but two large plasmids provide versatile enzyme sets involved in many metabolic pathways. In order to identify the key elements involved in biodegradation of the model compound, hexadecane, and diesel oil, we performed whole transcriptome analysis on cells grown in the presence of n-hexadecane and diesel oil. Sodium acetate grown cells were used as control. The final goal of the project is a comparative transcriptomic analysis of Rhodococcus erythropolis PR4 cells grown on acetate, on the model compound: hexadecane and the real substrate: diesel oil. Comparative transcriptomics of Rhodococcus erythropolis PR4 grown on n-hexadecane, diesel oil, and sodium acetate.
Project description:The EP4 receptor is known to mediate the protective effect of prostaglandin (PG) E2 in the gastrointestinal tract; however, the exact role of epithelial EP4 in intestinal pathophysiology remains unknown. We investigated the role of epithelial EP4 in maintaining colonic homeostasis by characterizing the intestinal epithelial cell-specific EP4 knockout (EP4 cKO) mice. We found a significant enrichment of genes involved in apoptosis-related pathways in the EP4 cKO colons. Moreover, inflammation-associated pathways were highly enriched and revealed more than half of the top 20 pathways related to immune response.
Project description:This SuperSeries is composed of the following subset Series: GSE5268: Effects of biphenyl on Rhodococcus sp. RHA1 GSE5269: Effects of ethylbenzene on Rhodococcus sp. RHA1 GSE5270: Effects of benzoate on Rhodococcus sp. RHA1 Refer to individual Series
Project description:Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a persistent nitramine explosive with long-lasting properties. Rhodococcus sp. strain DN22 has been discovered as one of the microorganisms capable of RDX degradation. Despite respectable studies on Rhodococcus sp. strain DN22, the proteins participating in RDX degradation (Oxidoreductase and Cytochrome P450) in the strain remain to be fragments. In this study, complete genome of Rhodococcus sp. strain DN22 was sequenced and analyzed, and the entire sequences of the two genes encoding Oxidoreductase and Cytochrome P450 in Rhodococcus sp. strain DN22 were predicted, which were validated through proteomic data. Besides, despite the identification of certain chemical substances as proposed characterized degradation intermediates of RDX, few studies have investigated the physiological changes and metabolic pathways occurring within Rhodococcus sp. cells when treated with RDX, particularly through the use of mass spectrometry-based omics. Hence, proteomics and metabolomics of Rhodococcus sp. strain DN22 were performed and analyzed with the presence or absence of RDX in the medium. A total of 3186 protein groups were identified and quantified between the two groups, with 117 proteins being significantly differentially expressed proteins. A total of 1056 metabolites were identified after merging positive and negative ion modes, among which 131 metabolites were significantly differential. Through the combined analysis of differential proteomics and metabolomics, several KEGG pathways, including two-component system, ABC transporters, alanine, aspartate and glutamate metabolism, arginine biosynthesis, purine metabolism, nitrogen metabolism, and phosphotransferase system (PTS) were found to be significantly enriched. We expect that our investigation will expand the acquaintance of Rhodococcus sp. strain DN22, and the knowledge of microbial degradation.
Project description:More effective therapeutic approaches for castration-resistant prostate cancer (CRPC) are urgently needed, thus reinforcing the need to understand how prostate tumors progress to castration resistance. We have established a novel mouse xenograft model of prostate cancer, KUCaP-2, which expresses the wild-type androgen receptor (AR) and which produces the prostate-specific antigen (PSA). In this model, tumors regress soon after castration, but then reproducibly restore their ability to proliferate after 1 to 2 months without AR mutation, mimicking the clinical behavior of CRPC. In the present study, we used this model to identify novel therapeutic targets for CRPC. Evaluating tumor tissues at various stages by gene expression profiling, we discovered that the prostaglandin E receptor EP4 subtype (EP4) was significantly upregulated during progression to castration resistance. Immunohistochemical results of human prostate cancer tissues confirmed that EP4 expression was higher in CRPC compared with hormone-naïve prostate cancer. Ectopic overexpression of EP4 in LNCaP cells (LNCaP-EP4 cells) drove proliferation and PSA production in the absence of androgen supplementation in vitro and in vivo. Androgen-independent proliferation of LNCaP-EP4 cells was suppressed when AR expression was attenuated by RNA interference. Treatment of LNCaP-EP4 cells with a specific EP4 antagonist, ONO-AE3-208, decreased intracellular cyclic AMP levels, suppressed PSA production in vitro, and inhibited castration-resistant growth of LNCaP-EP4 or KUCaP-2 tumors in vivo. Our findings reveal that EP4 overexpression, via AR activation, supports an important mechanism for castration-resistant progression of prostate cancer. Furthermore, they prompt further evaluation of EP4 antagonists as a novel therapeutic modality to treat CRPC. 4 samples in each group: androgen-dependent growth (AD), castration-induced regression nadir (ND), and castration-resistant regrowth (CR) stages