Gene regulation by elevated c-di-AMP levels in Streptococcus pneumoniae
Ontology highlight
ABSTRACT: Streptococcus pneumoniae harbors two cyclic di-AMP (c-di-AMP) phosphodiesterases Pde1 and Pde2. Previously, we demonstrated that deletion of one or both of these proteins leads to growth retardation in culture media, defects in the bacterial stress response, and attenuation in mouse models of disease. All of these phenotypes are due to increased levels of c-di-AMP, since the nature and break down products of each protein are different, and mutations that lower c-di-AMP levels partially restore growth and stress tolerance in these mutants. However, how c-di-AMP mediates pneumococcal stress resistance and virulence is unknown. To establish how c-di-AMP affects the transcriptome, RNA-Seq analysis was employed to compare gene expression between wild-type and Δpde1Δpde2 (ST2734) pneumococci. Overall, the competence regulon was upregulated in the Δpde1Δpde2 mutant.
ORGANISM(S): Streptococcus pneumoniae
PROVIDER: GSE113231 | GEO | 2018/04/18
REPOSITORIES: GEO
ACCESS DATA