Dendritic cells activated with LPS IFNg over 48 hours
Ontology highlight
ABSTRACT: Pro-inflammation triggered by microbial lipopolysaccharide (LPS) through Toll-like receptor (TLR) 4 in the presence of interferon (IFN)-g induces cytokine secretion in dendritic cells (DCs) tightly regulated by a defined differentiation program. This DC differentiation is characterized by a dynamic immune activating but also tolerance inducing phenotype associated with irreversible down-modulation of cytokines. CD40L on activated T cells further modifies DC differentiation. Using DNA micro arrays we showed down-regulated mRNA levels of TLR signaling molecules while CD40/CD40L signaling molecules were up-regulated at a time when LPS/IFN-g activated DCs have ceased cytokine expression. Accordingly we demonstrated that CD40/CD40L but not TLR4 or TLR3 signaling mediated by LPS or poly (cytidylic-inosinic) acid (poly I:C) and dsRNA re-established the capacity to secret interleukin (IL)-12 in LPS/IFN-g activated DCs, which have exhausted their potential for cytokine secretion. This resulting TH1 polarizing DC phenotype – which lacked accompanying secretion of the crucial immune suppressive IL-10 - enhanced activation of cytotoxic T lymphocytes (CTLs). We therefore conclude that immune modulation is restricted to a secondary T-cell mediated stimulus at an exhausted DC state which prevents an immune tolerant DC phenotype. These findings impacts on the rational design of TLR activated DC-based cancer vaccines for the induction of anti-tumoral CTL responses. Keywords: time course
ORGANISM(S): Homo sapiens
PROVIDER: GSE11327 | GEO | 2009/04/22
SECONDARY ACCESSION(S): PRJNA106649
REPOSITORIES: GEO
ACCESS DATA