GRO-seq reported in "Phosphorylated Lamin A/C in the nuclear interior binds active enhancers associated with abnormal transcription in progeria"
Ontology highlight
ABSTRACT: LMNA encodes nuclear Lamin A/C that tethers lamina-associated domains (LADs) to the nuclear periphery. Mutations in LMNA cause degenerative disorders including the premature aging disorder Hutchinson-Gilford progeria, but the mechanisms are unknown. We report that Ser22-phosphorylated (pS22) Lamin A/C was localized to the nuclear interior in human fibroblasts throughout the cell cycle. pS22-Lamin A/C interacted with a subset of putative active enhancers, not LADs, at locations co-bound by the transcriptional activator c-Jun. In progeria-patient fibroblasts, a subset of pS22-Lamin A/C-binding sites were lost whereas new pS22-Lamin A/C-binding sites emerged in normally quiescent loci. New pS22-Lamin A/C binding was accompanied by increased histone acetylation, increased c-Jun binding, and upregulation of nearby genes implicated in progeria pathophysiology. These results suggest that Lamin A/C regulates gene expression by enhancer binding. Disruption of the gene regulatory rather than LAD tethering function of Lamin A/C presents a novel mechanism for disorders caused by LMNA mutations.
ORGANISM(S): Homo sapiens
PROVIDER: GSE113350 | GEO | 2020/02/15
REPOSITORIES: GEO
ACCESS DATA