RNA-dependent epigenetic silencing directs transcriptional down regulation caused by intronic repeat expansions
Ontology highlight
ABSTRACT: Transcriptional down regulation caused by intronic triplet repeat expansions underlies diseases such as Friedreich?s ataxia. This down regulation of gene expression is coupled with epigenetic changes but the underlying mechanisms are unknown. Here, we show that an intronic TTC/GAA triplet expansion within the IIL1 gene of Arabidopsis thaliana results in accumulation of 24-nt siRNAs and repressive histone marks at the IIL1 locus, which in turn causes its transcriptional down regulation and an associated phenotype. Knocking down DICER LIKE-3 (DCL3), which produces 24-nt siRNAs, suppressed transcriptional down regulation of IIL1 and the expansion-associated phenotype. Furthermore, knocking down additional components of the RNA-dependent DNA Methylation (RdDM) pathway, also suppressed both transcriptional down regulation of IIL1 and the repeat expansion associated phenotype. Thus our results show that triplet repeat expansions can lead to local siRNA biogenesis, which in turn down regulates transcription through an RdDM-dependent epigenetic modification.
Project description:CGG repeat expansions in the Fragile X mental retardation 1 (FMR1) gene are responsible for a family of associated disorders characterized by either intellectual disability and autism (Fragile X Syndrome, FXS), or adult-onset neurodegeneration (Fragile X-associated Tremor/Ataxia Syndrome, FXTAS). However, the FMR1 locus is complex and encodes several long noncoding RNAs (lncRNAs), whose expression is altered by repeat expansion mutations. The role of these lncRNAs is thus far unknown; therefore we investigated the functionality of FMR4, which we previously identified. “Full”-length expansions of the FMR1 triplet repeat cause silencing of both FMR1 and FMR4, thus we are interested in potential loss-of-function that may add to phenotypic manifestation of FXS. Since the two transcripts do not exhibit cis-regulation of one another, we examined the potential for FMR4 to regulate target genes at distal genomic loci using gene expression microarrays. We identified FMR4-responsive genes, and further investigated their function related to human neural precursor cells. We therefore propose that FMR4’s function is as a gene-regulatory lncRNA and that this transcript may function in normal development. Closer examination of FMR4 increases our understanding of the role of regulatory lncRNA and the consequences of FMR1 repeat expansions. Study design includes 2 timepoints (6 and 24 hrs post-transfection) x 4 conditions (knockdown & control, overexpression & control) x 3 biological replicates. 3 technical replicates were pooled to creat each biological replicate.
Project description:CGG repeat expansions in the Fragile X mental retardation 1 (FMR1) gene are responsible for a family of associated disorders characterized by either intellectual disability and autism (Fragile X Syndrome, FXS), or adult-onset neurodegeneration (Fragile X-associated Tremor/Ataxia Syndrome, FXTAS). However, the FMR1 locus is complex and encodes several long noncoding RNAs (lncRNAs), whose expression is altered by repeat expansion mutations. The role of these lncRNAs is thus far unknown; therefore we investigated the functionality of FMR4, which we previously identified. “Full”-length expansions of the FMR1 triplet repeat cause silencing of both FMR1 and FMR4, thus we are interested in potential loss-of-function that may add to phenotypic manifestation of FXS. Since the two transcripts do not exhibit cis-regulation of one another, we examined the potential for FMR4 to regulate target genes at distal genomic loci using gene expression microarrays. We identified FMR4-responsive genes, and further investigated their function related to human neural precursor cells. We therefore propose that FMR4’s function is as a gene-regulatory lncRNA and that this transcript may function in normal development. Closer examination of FMR4 increases our understanding of the role of regulatory lncRNA and the consequences of FMR1 repeat expansions.
Project description:In flowering plants, silencing of transposable elements (TEs) is achieved by the installation of DNA methylation and histone modifications. 24-nt long small-interfering RNAs (siRNAs) guide the deposition of DNA methylation through RNA-directed DNA methylation (RdDM), which can be maintained independently of siRNAs in coordination with H3K9me2. In most angiosperms, RdDM is ubiquitously expressed in vegetative and sexual reproductive tissues. Spirodela polyrhiza (Lemnaceae), represents an exception with low levels of DNA methylation, very low expression of RdDM and near absence of 24-nt siRNAs during its clonal vegetative propagation. Moreover, some components of RdDM, DNA methylation maintenance and RNA silencing are absent from the genome. By investigating the distribution of epigenetic marks on TEs, we show that Spirodela epigenome is shaped by the loss of DNA methylation and H3K9me2 as TEs decay. Nonetheless, such abundant TE remnants remain silenced and marked by H3K9me1. In contrast, scarce, relatively intact TEs display high levels of DNA methylation, H3K9me2 and siRNAs whose patterns resemble those of TEs subjected to RdDM in other angiosperms. Furthermore, despite the absence of DCL2 in duckweeds, Spirodela can produce 22-nt siRNAs, not only from TEs, but from diverse sources of double-stranded (ds)RNA. Our data suggests that RdDM might still be functional during vegetative clonal growth, albeit tissue or developmentally regulated, and highlights the use of alternative models to further understand and explore the diversity of silencing pathways in plants.
Project description:In plants, RNA polymerase II (Pol II) transcription of inverted DNA repeats produces hairpin RNAs that are processed by several DICER-LIKE enzymes into siRNAs that are 21-24-nt in length. When targeted to transcriptional regulatory regions, the 24-nt size class can induce RNA-directed DNA methylation (RdDM) and transcriptional gene silencing (TGS). In a forward genetic screen to identify mutants defective in RdDM of a target enhancer leading to TGS of a downstream GFP reporter gene in Arabidopsis thaliana, we recovered a structurally mutated silencer locus, named SM-NM-^T35S, in which the 35S promoter driving transcription of an inverted repeat of target enhancer sequences had been specifically deleted. Although Pol II-dependent, hairpin-derived 21-24-nt siRNAs were no longer generated at the newly created SM-NM-^T35S locus, the GFP reporter gene was nevertheless still partially silenced. Silencing was associated with methylation in a short tandem repeat in the upstream target enhancer and with low levels of 24-nt tandem repeat siRNAs. Introducing an nrpd1 mutation into the SM-NM-^T35S line fully released GFP silencing and eliminated both the tandem repeat methylation and associated 24-nt siRNAs, demonstrating their dependence on Pol IV. Deletion of the 35S promoter thus revealed a Pol IV-dependent pathway of 24-nt siRNA biogenesis that was previously inhibited or masked by the Pol II-dependent pathway in wild-type plants. Both Pol II- and Pol IV-dependent siRNAs accrued predominantly from cytosine (C)-containing segments of the tandem repeat monomer, suggesting that the local base composition influenced siRNA accumulation. Preferential accumulation of siRNAs at C-containing sequences was also observed at an endogenous tandem repeat comprising discrete C-rich and AT-rich sections. Our studies illuminate the potential complexity of siRNA generation at repeat-containing loci and show that Pol IV can act in siRNA biogenesis in the absence of a conventional Pol II promoter. Examination of whole-genome DNA methylation status in transgenic T+S Arabidopsis plant
Project description:Expansion of a hexanucleotide repeat GGGGCC (G4C2) in C9ORF72 is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia. Transcripts carrying (G4C2) expansions undergo unconventional, non-ATG-dependent translation, generating toxic dipeptide repeat (DPR) proteins that are thought to contribute to disease. Here, we transfected HEK 293T cells with GFP-tagged dipeptides (GA, GR, PA, PG and PR) and performed LC-MS/MS to identify immunoprecipitated interactors.
Project description:In plants, RNA polymerase II (Pol II) transcription of inverted DNA repeats produces hairpin RNAs that are processed by several DICER-LIKE enzymes into siRNAs that are 21-24-nt in length. When targeted to transcriptional regulatory regions, the 24-nt size class can induce RNA-directed DNA methylation (RdDM) and transcriptional gene silencing (TGS). In a forward genetic screen to identify mutants defective in RdDM of a target enhancer leading to TGS of a downstream GFP reporter gene in Arabidopsis thaliana, we recovered a structurally mutated silencer locus, named SΔ35S, in which the 35S promoter driving transcription of an inverted repeat of target enhancer sequences had been specifically deleted. Although Pol II-dependent, hairpin-derived 21-24-nt siRNAs were no longer generated at the newly created SΔ35S locus, the GFP reporter gene was nevertheless still partially silenced. Silencing was associated with methylation in a short tandem repeat in the upstream target enhancer and with low levels of 24-nt tandem repeat siRNAs. Introducing an nrpd1 mutation into the SΔ35S line fully released GFP silencing and eliminated both the tandem repeat methylation and associated 24-nt siRNAs, demonstrating their dependence on Pol IV. Deletion of the 35S promoter thus revealed a Pol IV-dependent pathway of 24-nt siRNA biogenesis that was previously inhibited or masked by the Pol II-dependent pathway in wild-type plants. Both Pol II- and Pol IV-dependent siRNAs accrued predominantly from cytosine (C)-containing segments of the tandem repeat monomer, suggesting that the local base composition influenced siRNA accumulation. Preferential accumulation of siRNAs at C-containing sequences was also observed at an endogenous tandem repeat comprising discrete C-rich and AT-rich sections. Our studies illuminate the potential complexity of siRNA generation at repeat-containing loci and show that Pol IV can act in siRNA biogenesis in the absence of a conventional Pol II promoter.
Project description:Microsatellite repeat expansion disease loci can exhibit pleiotropic clinical and biological effects depending on repeat length. Large expansions in C9orf72 (100s-1000s of units) are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). However, whether intermediate expansions also contribute to neurodegenerative disease is not well understood. Several studies have identified intermediate repeats in Parkinson’s disease patients, but the association was not found in autopsy confirmed cases. We hypothesized that intermediate C9orf72 repeats are a genetic risk factor for corticobasal degeneration (CBD), a neurodegenerative disease that can be clinically similar to Parkinson’s but has distinct tau protein pathology. Indeed, intermediate C9orf72 repeats were significantly enriched in autopsy-proven CBD (n=354 cases, odds ratio=3.59, p-value=0.00024). While large C9orf72 repeat expansions are known to decrease C9orf72 expression, intermediate C9orf72 repeats result in increased C9orf72 expression in human brain tissue and CRISPR/cas9 knockin iPSC derived neural progenitor cells. In contrast to cases of FTD/ALS with large C9orf72 expansions, CBD with intermediate C9orf72 repeats was not associated with pathologic RNA foci or dipeptide repeat protein aggregates. Knock-in cells with intermediate repeats exhibit numerous changes in gene expression pathways relating to vesicle trafficking and autophagy. Additionally, overexpression of C9orf72 without the repeat expansion leads to defects in autophagy under nutrient starvation conditions. These results raise the possibility that therapeutic strategies to reduce C9orf72 expression may be beneficial for the treatment of CBD.
Project description:Excessive expansions of glutamine (Q)-rich repeats in various human proteins are known to result in severe neurodegenerative disorders such as Huntington’s disease and several ataxias. However, the physiological role of these repeats and the consequences of more moderate repeat variation, remain unknown. Here, we demonstrate that Q-rich repeats are highly enriched in eukaryotic transcription factors where they act as functional modulators. Incremental changes in the number of repeats in the yeast transcriptional regulator Ssn6p (Cyc8p) result in systematic, repeat-length dependent variation in expression of target genes that result in direct phenotypic changes. The function of Ssn6p increases with its repeat number, until a certain threshold where further expansion leads to aggregation. Quantitative proteomic analysis reveals that the Ssn6p repeats affect its solubility and interactions with Tup1 and other regulators. Thus, Q-rich repeats are dynamic functional domains that modulate a regulator’s innate function, with the inherent risk of pathogenic repeat expansions. Transcriptome profiles of two biological replicates of each SSN6 tandem repeat number variant and the WT grown in a glucose-rich medium (4% glucose - glu4) or in a glucose-starved medium (0 % glucose - glu0)