Human iPSC-derived GABAergic Interneuron Transplants Attenuate Neuropathic Pain
Ontology highlight
ABSTRACT: Neuropathic pain causes severe suffering and most patients are resilient to current therapies. A core element of neuropathic pain is the loss of inhibitory tone in the spinal cord. Previous studies have shown that foetal GABAergic neuron precursors can provide relief from pain. However, the source of these precursor cells and their multipotent status make them unsuitable for therapeutic use. Here we extend these findings by showing, for the first time, that spinally transplanted, terminally differentiated hiPSC-derived GABAergic (iGABAergic) neurons provide significant, long-term and safe relief from neuropathic pain induced by peripheral nerve injury in mice. Furthermore, iGABAergic Neuron transplants survive long term in the injured spinal cord and show evidence of synaptic integration. Together, this provides the proof in principle for the first viable GABAergic transplants to treat human neuropathic pain patients.
ORGANISM(S): Homo sapiens
PROVIDER: GSE115565 | GEO | 2020/01/23
REPOSITORIES: GEO
ACCESS DATA