Transcriptome Profiling in KY1005-treated NHP HCT-recipients
Ontology highlight
ABSTRACT: Graft versus host disease (GVHD) is the most common complication of hematopoietic stem cell transplant (HCT). However, our understanding of the molecular pathways that cause this disease remains incomplete, leading to inadequate treatment strategies. To address this, we measured the gene expression profile of non-human primate (NHP) T cells during acute GVHD. In this study we specifically interrogated the transcriptional signatures of animals treated with FR104 monotherapy and FR104/Sirolimus combination therapy
Project description:Graft versus host disease (GVHD) is the most common complication of hematopoietic stem cell transplant (HCT). However, our understanding of the molecular pathways that cause this disease remains incomplete, leading to inadequate treatment strategies. To address this, we measured the gene expression profile of non-human primate (NHP) T cells during acute GVHD. In this study we specifically interrogated the transcriptional signatures of animals treated with KY1005 monotherapy and KY1005/Sirolimus combination therapy
Project description:Graft versus host disease (GVHD) is the most common complication of hematopoietic stem cell transplant (HCT). However, our understanding of the molecular pathways that cause this disease remains incomplete, leading to inadequate treatment strategies. To address this, we measured the gene expression profile of non-human primate (NHP) T cells during acute GVHD. This transcriptome analysis enables an unsupervised approach to the identification of targets for disease control using a model with an immune system that closely overlaps with the human and has a high degree of cross-reactivity with human antibody-based therapeutics.
Project description:Graft versus host disease (GVHD) is the most common complication of hematopoietic stem cell transplant (HCT). However, our understanding of the molecular pathways that cause this disease remains incomplete, leading to inadequate treatment strategies. To address this, we measured the gene expression profile of non-human primate (NHP) T cells during acute GVHD (GSE73723). Within these profiles we discovered potentially druggable targets not previously implicated in GVHD, prominently including aurora kinase A (AURKA). In this study, we performed a planned comparison of AURKA gene expression in HCT-recipients with clinical GVHD and compared it to expression in HCT-recipients without clinical GVHD.
Project description:Tissue-specific T cell immune responses play a critical role in maintaining organ health, but can also drive immune pathology during both auto- and alloimmunity. The mechanisms controlling intra-tissue T cell programming remain unclear. Here, we leverage a non-human primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HCT) to probe the biological underpinnings of tissue-specific alloimmune disease, using a comprehensive systems immunology approach.Transcriptional profiling revealed substantial biological differences between T cells, infiltrating the lung and liver during aGVHD.
Project description:Notch signaling promotes T-cell pathogenicity and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) in mice, with a dominant role for the Delta-like ligand DLL4. To assess if Notch’s effects are evolutionarily conserved and identify key mechanisms, we studied antibody-mediated DLL4 blockade in a non-human primate (NHP) model similar to human allo-HCT. Short-term DLL4 blockade improved post-transplant survival with striking, durable protection from gastrointestinal GVHD, out of proportion to other disease sites. Unlike prior immunosuppressive strategies tested in the NHP GVHD model, anti-DLL4 interfered with a T-cell transcriptional program associated with intestinal infiltration. In cross-species investigations, Notch inhibition decreased surface abundance of the gut-homing integrin α4β7 in conventional T-cells while preserving α4β7 in regulatory T-cells, with findings suggesting increased 1 competition for 4 binding in conventional T-cells. Secondary lymphoid organ fibroblastic reticular cells emerged as the critical cellular source of Delta-like Notch ligands for Notch-mediated up-regulation of α4β7 integrin in T-cells after allo-HCT. Altogether, DLL4/Notch blockade decreased effector T-cell infiltration into the gut, with increased regulatory to conventional T-cell ratios early after allo-HCT. Our results identify a conserved, biologically unique and targetable role of DLL4/Notch signaling in GVHD.
Project description:Previous studies from our laboratory have shown that the resistance increase observed after biological systemic acquired resistance (SAR) induction in plants can be mimicked by exogenous plant treatment with N-hydroxypipecolic acid (NHP, Hartmann et al., 2018, Schnake et al., 2020). Moreover, exogenous application of the NHP biosynthetic precursor pipecolic acid (Pip) induced a transcriptional response that was overlapping with the SAR transcriptional response and fully depended on the NHP synthase FMO1 (Hartmann et al., 2018; E-MTAB-6243). In order to investigate whether elevations of NHP lead to a SAR-like transcriptional reprogramming, we supplied individual Arabidopsis wildtype Col-0 plants, as well as sid2-1 and npr1-3 mutant plants, with doses of 10 µmol NHP and determined the transcriptional response in leaves 24 hours later on the whole genome level by RNA-sequencing analyses in relation to control-treated (H2O) plants. Col-0 plants were additionally treated with doses of 10 µmol Pip in order to directly compare the transcriptional responses of the foliage between Pip and NHP. Arabidopsis thaliana plants were grown individually in pots containing a mixture of soil, vermiculite and sand (8:1:1) in a controlled cultivation chamber with a 10-h day (9 AM to 7 PM; photon flux density 100 mol m-2 s-1) / 14-h night cycle and a relative humidity of 70 %. Day and night temperatures were set to 21°C and 18°C, respectively. Experiments were performed with 5-week-old, naive plants exhibiting a uniform appearance. Treatments with NHP and Pip were essentially performed as detailed in Hartmann et al. (2018, Cell 173, 456–469). In brief, 10 ml of a 1 mM aqueous solution of NHP or Pip (equates to a dose of 10 µmol) were pipetted onto the soil of individually cultivated plants. 10 ml of water applied in the way served as control treatments. In total, three biologically independent, replicate experiments were performed. In each experiment, 18 full-grown leaves from 6 different plants were pooled 24 hours after the respective treatments for one biological replicate. In this way, 3 biologically independent, replicate samples per treatment and plant genotype were obtained.
Project description:Due to its low level of nephrotoxicity and capacity to harness tolerogenic pathways, sirolimus (SRL) has been proposed as an alternative to calcineurin inhibitors in transplantation. The exact mechanisms underlying its unique immunosuppressive profile in humans, however, are still not well understood. In the current study we aimed to depict the in vivo effects of SRL in comparison with cyclosporin A (CSA) by employing gene expression profiling and multiparameter flow cytometry on blood cells collected from stable kidney recipients under immunosuppressant monotherapy. SRL recipients displayed an increased frequency of CD4+CD25highFoxp3+ T cells. However, this was accompanied by an increased number of effector memory T cells and by enrichment in NFkB-related pro-inflammatory expression pathways and monocyte and NK cell lineage-specific transcripts. Furthermore, measurement of a transcriptional signature characteristic of operationally tolerant kidney recipients failed to detect differences between SRL and CSA treated recipients. In conclusion, we show here that the blood transcriptional profile induced by SRL monotherapy in vivo does not resemble that of operationally tolerant recipients and is dominated by innate immune cells and NFkB-related pro-inflammatory events. These data provide novel insights on the complex effects of SLR on the immune system in clinical transplantation. The complete database comprised the expression measurements of 54 675 genes for kidney trasplant recipient PBMC treated with SRL (n=23) and CSA (n=14) monotherapy. 9 healthy controls were also included.