The Dynamic Transcriptome of Schizosaccharomyces pombe Revealed by RNA/DNA Hybrid Mapping
Ontology highlight
ABSTRACT: We determined the strand-specific transcriptome of the fission yeast S. pombe under multiple growth conditions using a novel RNA/DNA hybridization mapping (HybMap) technique. HybMap uses an antibody against an RNA/DNA hybrid to detect RNA molecules hybridized to a high density DNA oligonucleotide tiling microarray. HybMap exhibited exceptional dynamic range and reproducibility, and clearly revealed coding, non-coding and structural RNAs, as well as new RNAs conserved in distant yeast species. Virtually the entire euchromatic genome (including intergenics) is transcribed, with heterochromatin dampening intergenic transcription. Transcriptomes of alternative growth conditions reveal changes in both coding and non-coding RNAs. Interestingly, our analysis reveals large numbers of non-coding RNAs, extensive antisense transcription, new properties of antisense transcripts, and induced divergent transcription. Furthermore, HybMap informed the efficiency and locations of RNA splicing genome-wide. Finally, a remarkable feature is observed at heterochromatin boundaries inside centromeres; strand-specific transcription islands around tRNAs. These new features are discussed in terms of organism fitness and transcriptome evolution. Keywords: yeast, gene expression, bioinformatics
ORGANISM(S): Schizosaccharomyces pombe
PROVIDER: GSE11619 | GEO | 2008/06/30
SECONDARY ACCESSION(S): PRJNA106127
REPOSITORIES: GEO
ACCESS DATA