Project description:During development, transcriptional and chromatin modification changes co-occur but the order and causality of events often remain unclear. We explore the interrelationship of these processes using the paradigm of X-chromosome inactivation (XCI). We initiate XCI in female, mouse embryonic stem cells by inducing Xist expression and monitor changes in transcription and chromatin by allele-specific TT-seq and ChIP-seq respectively. An unprecedented temporal resolution enabled identification of the earliest chromatin alterations during XCI. We demonstrate that HDAC3 interacts with both NCOR1 and NCOR2 and is pre-bound on the X chromosome where it deacetylates histones to promote efficient gene silencing. We also reveal the choreography of polycomb accumulation following Xist RNA coating, with PRC1-associated H2AK119Ub preceding PRC2-associated H3K27me3. Furthermore, polycomb-associated marks accumulate initially at large, intergenic domains and then spreads into genes but only in the context of gene silencing. Our results provide the hierarchy of chromatin events during XCI and demonstrate that some chromatin changes play key roles in mediating transcriptional silencing.
Project description:During development, the precise relationships between transcription and chromatin modifications often remain unclear. We use the X chromosome inactivation (XCI) paradigm to explore the implication of chromatin changes in gene silencing. Using female mouse embryonic stem cells, we initiate XCI by inducing Xist and then monitor the temporal changes in transcription and chromatin by allele-specific profiling. This reveals histone deacetylation and H2AK119 ubiquitination as the earliest chromatin alterations during XCI. We show that HDAC3 is pre-bound on the X chromosome and that, upon Xist coating, its activity is required for efficient gene silencing. We also reveal that first PRC1-associated H2AK119Ub and then PRC2-associated H3K27me3 accumulate initially at large intergenic domains that can then spread into genes only in the context of histone deacetylation and gene silencing. Our results reveal the hierarchy of chromatin events during the initiation of XCI and identify key roles for chromatin in the early steps of transcriptional silencing.