Transcriptomics

Dataset Information

0

PyMINEr Finds Gene and Autocrine/Paracrine Networks from Human Islet scRNAseq


ABSTRACT: Toolsets available for in-depth analysis of scRNAseq datasets by biologists with little informatics experience is limited. Here we describe an informatics tool (PyMINEr) that fully automates cell type identification, cell type-specific pathway analyses, graph theory-based analysis of gene regulation, and detection of autocrine/paracrine signaling networks in silico. We applied PyMINEr to interrogate human pancreatic islet scRNAseq datasets and discovered several features of co-expression graphs including: concordance of scRNAseq-graph structure with both protein-protein interactions and 3D-genomic architecture; association of high connectivity and low expression genes with cell type-enrichment; and potential for graph-structure to clarify potential etiologies of enigmatic disease-associated variants. We further created a consensus co-expression network and autocrine/paracrine signaling networks within and across islet cell types from 7-datasets. PyMINEr correctly identified changes in BMP/WNT signaling associated with cystic fibrosis pancreatic acinar-cell loss. This proof-of-principle study demonstrates that the PyMINEr framework will be a valuable resource for scRNAseq analyses.

ORGANISM(S): Homo sapiens

PROVIDER: GSE116753 | GEO | 2019/01/11

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

| PRJNA480045 | ENA
2021-05-27 | PXD025126 | Pride
2023-04-17 | GSE201256 | GEO
2022-12-23 | GSE211799 | GEO
2024-04-06 | PXD046026 | Pride
2016-02-19 | E-GEOD-77980 | biostudies-arrayexpress
2009-08-07 | E-GEOD-15543 | biostudies-arrayexpress
2024-09-02 | BIOMD0000001021 | BioModels
2021-10-12 | PXD022561 | Pride
| EGAD00001005206 | EGA